Structural, magnetic, and electrical properties driven by monovalent Li substitution on Bi1−xLixFeO3 (0 ≤ x ≤ 0.1) ferrites

A series of Bi 1−x Li x FeO 3 (0.0 ≤ x ≤ 0.1) compounds with monovalent substitution have been synthesized via sol–gel techniques to examine how Li substitution affects their structural, microstructural, magnetic, ferroelectric, and dielectric properties. The Rietveld-fitted X-ray diffraction analys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2024-10, Vol.35 (30), p.1946, Article 1946
Hauptverfasser: Joshi, Prabhav, Modi, Anchit, Kapoor, Shivani K., Tiwari, Shivendra, Shukla, Joyti, Mishra, Ashutosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 30
container_start_page 1946
container_title Journal of materials science. Materials in electronics
container_volume 35
creator Joshi, Prabhav
Modi, Anchit
Kapoor, Shivani K.
Tiwari, Shivendra
Shukla, Joyti
Mishra, Ashutosh
description A series of Bi 1−x Li x FeO 3 (0.0 ≤ x ≤ 0.1) compounds with monovalent substitution have been synthesized via sol–gel techniques to examine how Li substitution affects their structural, microstructural, magnetic, ferroelectric, and dielectric properties. The Rietveld-fitted X-ray diffraction analysis shows that all samples crystallize in a rhombohedral structure with R-3c crystal symmetry, and the lattice parameters vary due to the ionic size mismatch between Bi and Li cations. Additionally, the particle size, determined by the Scherrer equation, and the grain size, measured by scanning electron microscopy, decrease by substituting monovalent Li cations. The room temperature Raman spectroscopy shows the reduction of Raman shift as doping concentration increases. Notably, doped compounds’ saturation magnetization (Ms) significantly increases with higher Li-doping. This observation suggests that the exchange interactions between Fe–O–Fe have been enhanced, resulting in spatial modulation for the destruction of the helical structure. Furthermore, increased polarization and leaky behavior are observed with increasing Li content. These findings provide valuable insights for tailoring the properties of BiFeO 3 -based compounds for potential applications in various fields such as spintronics, multiferroics, and sensors.
doi_str_mv 10.1007/s10854-024-13740-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119814154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119814154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-3eb57cfcd69be9c245baad14ccc470a49792e93bb65e41e362d5cce5e50849e73</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4CrgRsHRXDuTpRZvUOhCBXchkzmVlOlMTTLS7lzarc_gk_VJjFZ0JxzOOYv_P5cPoQNKTikh-VmgpJAiI0xklOeCZGoD9ajMeSYK9riJekTJPBOSsW20E8KEENIXvOih5V30nY2dN_UJnpqnBqKzJ9g0FYYabPTOmhrPfDsDHx0EXHn3Ag0uF3jaNu2LqaGJeOhw6MoQXeyiaxuc4sLR1dv7fOjmVzDi-IisXper5UfK898uHX-Mx-C9ixD20NbY1AH2f-oueri6vB_cZMPR9e3gfJhZRkjMOJQyt2Nb9VUJyjIhS2MqKqy1IidGqFwxULws-xIEBd5nlbQWJEhSCAU530WH67npqecOQtSTtvNNWqk5paqggkqRVGytsr4NwcNYz7ybGr_QlOgv5HqNXCfk-hu5VsnE16aQxM0T-L_R_7g-AdgBi_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119814154</pqid></control><display><type>article</type><title>Structural, magnetic, and electrical properties driven by monovalent Li substitution on Bi1−xLixFeO3 (0 ≤ x ≤ 0.1) ferrites</title><source>Springer journals</source><creator>Joshi, Prabhav ; Modi, Anchit ; Kapoor, Shivani K. ; Tiwari, Shivendra ; Shukla, Joyti ; Mishra, Ashutosh</creator><creatorcontrib>Joshi, Prabhav ; Modi, Anchit ; Kapoor, Shivani K. ; Tiwari, Shivendra ; Shukla, Joyti ; Mishra, Ashutosh</creatorcontrib><description>A series of Bi 1−x Li x FeO 3 (0.0 ≤ x ≤ 0.1) compounds with monovalent substitution have been synthesized via sol–gel techniques to examine how Li substitution affects their structural, microstructural, magnetic, ferroelectric, and dielectric properties. The Rietveld-fitted X-ray diffraction analysis shows that all samples crystallize in a rhombohedral structure with R-3c crystal symmetry, and the lattice parameters vary due to the ionic size mismatch between Bi and Li cations. Additionally, the particle size, determined by the Scherrer equation, and the grain size, measured by scanning electron microscopy, decrease by substituting monovalent Li cations. The room temperature Raman spectroscopy shows the reduction of Raman shift as doping concentration increases. Notably, doped compounds’ saturation magnetization (Ms) significantly increases with higher Li-doping. This observation suggests that the exchange interactions between Fe–O–Fe have been enhanced, resulting in spatial modulation for the destruction of the helical structure. Furthermore, increased polarization and leaky behavior are observed with increasing Li content. These findings provide valuable insights for tailoring the properties of BiFeO 3 -based compounds for potential applications in various fields such as spintronics, multiferroics, and sensors.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-024-13740-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cations ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal lattices ; Dielectric properties ; Doping ; Electrical properties ; Ferroelectricity ; Grain size ; Lattice parameters ; Magnetic properties ; Magnetic saturation ; Materials Science ; Optical and Electronic Materials ; Raman spectroscopy ; Room temperature ; Sol-gel processes ; Spintronics ; Substitutes</subject><ispartof>Journal of materials science. Materials in electronics, 2024-10, Vol.35 (30), p.1946, Article 1946</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-3eb57cfcd69be9c245baad14ccc470a49792e93bb65e41e362d5cce5e50849e73</cites><orcidid>0009-0002-2225-2252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-024-13740-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-024-13740-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Joshi, Prabhav</creatorcontrib><creatorcontrib>Modi, Anchit</creatorcontrib><creatorcontrib>Kapoor, Shivani K.</creatorcontrib><creatorcontrib>Tiwari, Shivendra</creatorcontrib><creatorcontrib>Shukla, Joyti</creatorcontrib><creatorcontrib>Mishra, Ashutosh</creatorcontrib><title>Structural, magnetic, and electrical properties driven by monovalent Li substitution on Bi1−xLixFeO3 (0 ≤ x ≤ 0.1) ferrites</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>A series of Bi 1−x Li x FeO 3 (0.0 ≤ x ≤ 0.1) compounds with monovalent substitution have been synthesized via sol–gel techniques to examine how Li substitution affects their structural, microstructural, magnetic, ferroelectric, and dielectric properties. The Rietveld-fitted X-ray diffraction analysis shows that all samples crystallize in a rhombohedral structure with R-3c crystal symmetry, and the lattice parameters vary due to the ionic size mismatch between Bi and Li cations. Additionally, the particle size, determined by the Scherrer equation, and the grain size, measured by scanning electron microscopy, decrease by substituting monovalent Li cations. The room temperature Raman spectroscopy shows the reduction of Raman shift as doping concentration increases. Notably, doped compounds’ saturation magnetization (Ms) significantly increases with higher Li-doping. This observation suggests that the exchange interactions between Fe–O–Fe have been enhanced, resulting in spatial modulation for the destruction of the helical structure. Furthermore, increased polarization and leaky behavior are observed with increasing Li content. These findings provide valuable insights for tailoring the properties of BiFeO 3 -based compounds for potential applications in various fields such as spintronics, multiferroics, and sensors.</description><subject>Cations</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal lattices</subject><subject>Dielectric properties</subject><subject>Doping</subject><subject>Electrical properties</subject><subject>Ferroelectricity</subject><subject>Grain size</subject><subject>Lattice parameters</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Raman spectroscopy</subject><subject>Room temperature</subject><subject>Sol-gel processes</subject><subject>Spintronics</subject><subject>Substitutes</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWC8v4CrgRsHRXDuTpRZvUOhCBXchkzmVlOlMTTLS7lzarc_gk_VJjFZ0JxzOOYv_P5cPoQNKTikh-VmgpJAiI0xklOeCZGoD9ajMeSYK9riJekTJPBOSsW20E8KEENIXvOih5V30nY2dN_UJnpqnBqKzJ9g0FYYabPTOmhrPfDsDHx0EXHn3Ag0uF3jaNu2LqaGJeOhw6MoQXeyiaxuc4sLR1dv7fOjmVzDi-IisXper5UfK898uHX-Mx-C9ixD20NbY1AH2f-oueri6vB_cZMPR9e3gfJhZRkjMOJQyt2Nb9VUJyjIhS2MqKqy1IidGqFwxULws-xIEBd5nlbQWJEhSCAU530WH67npqecOQtSTtvNNWqk5paqggkqRVGytsr4NwcNYz7ybGr_QlOgv5HqNXCfk-hu5VsnE16aQxM0T-L_R_7g-AdgBi_8</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Joshi, Prabhav</creator><creator>Modi, Anchit</creator><creator>Kapoor, Shivani K.</creator><creator>Tiwari, Shivendra</creator><creator>Shukla, Joyti</creator><creator>Mishra, Ashutosh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0002-2225-2252</orcidid></search><sort><creationdate>20241001</creationdate><title>Structural, magnetic, and electrical properties driven by monovalent Li substitution on Bi1−xLixFeO3 (0 ≤ x ≤ 0.1) ferrites</title><author>Joshi, Prabhav ; Modi, Anchit ; Kapoor, Shivani K. ; Tiwari, Shivendra ; Shukla, Joyti ; Mishra, Ashutosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-3eb57cfcd69be9c245baad14ccc470a49792e93bb65e41e362d5cce5e50849e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cations</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal lattices</topic><topic>Dielectric properties</topic><topic>Doping</topic><topic>Electrical properties</topic><topic>Ferroelectricity</topic><topic>Grain size</topic><topic>Lattice parameters</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Raman spectroscopy</topic><topic>Room temperature</topic><topic>Sol-gel processes</topic><topic>Spintronics</topic><topic>Substitutes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joshi, Prabhav</creatorcontrib><creatorcontrib>Modi, Anchit</creatorcontrib><creatorcontrib>Kapoor, Shivani K.</creatorcontrib><creatorcontrib>Tiwari, Shivendra</creatorcontrib><creatorcontrib>Shukla, Joyti</creatorcontrib><creatorcontrib>Mishra, Ashutosh</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joshi, Prabhav</au><au>Modi, Anchit</au><au>Kapoor, Shivani K.</au><au>Tiwari, Shivendra</au><au>Shukla, Joyti</au><au>Mishra, Ashutosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural, magnetic, and electrical properties driven by monovalent Li substitution on Bi1−xLixFeO3 (0 ≤ x ≤ 0.1) ferrites</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>35</volume><issue>30</issue><spage>1946</spage><pages>1946-</pages><artnum>1946</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>A series of Bi 1−x Li x FeO 3 (0.0 ≤ x ≤ 0.1) compounds with monovalent substitution have been synthesized via sol–gel techniques to examine how Li substitution affects their structural, microstructural, magnetic, ferroelectric, and dielectric properties. The Rietveld-fitted X-ray diffraction analysis shows that all samples crystallize in a rhombohedral structure with R-3c crystal symmetry, and the lattice parameters vary due to the ionic size mismatch between Bi and Li cations. Additionally, the particle size, determined by the Scherrer equation, and the grain size, measured by scanning electron microscopy, decrease by substituting monovalent Li cations. The room temperature Raman spectroscopy shows the reduction of Raman shift as doping concentration increases. Notably, doped compounds’ saturation magnetization (Ms) significantly increases with higher Li-doping. This observation suggests that the exchange interactions between Fe–O–Fe have been enhanced, resulting in spatial modulation for the destruction of the helical structure. Furthermore, increased polarization and leaky behavior are observed with increasing Li content. These findings provide valuable insights for tailoring the properties of BiFeO 3 -based compounds for potential applications in various fields such as spintronics, multiferroics, and sensors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-024-13740-9</doi><orcidid>https://orcid.org/0009-0002-2225-2252</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2024-10, Vol.35 (30), p.1946, Article 1946
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_3119814154
source Springer journals
subjects Cations
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystal lattices
Dielectric properties
Doping
Electrical properties
Ferroelectricity
Grain size
Lattice parameters
Magnetic properties
Magnetic saturation
Materials Science
Optical and Electronic Materials
Raman spectroscopy
Room temperature
Sol-gel processes
Spintronics
Substitutes
title Structural, magnetic, and electrical properties driven by monovalent Li substitution on Bi1−xLixFeO3 (0 ≤ x ≤ 0.1) ferrites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural,%20magnetic,%20and%20electrical%20properties%20driven%20by%20monovalent%20Li%20substitution%20on%20Bi1%E2%88%92xLixFeO3%20(0%E2%80%89%E2%89%A4%E2%80%89x%E2%80%89%E2%89%A4%E2%80%890.1)%20ferrites&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Joshi,%20Prabhav&rft.date=2024-10-01&rft.volume=35&rft.issue=30&rft.spage=1946&rft.pages=1946-&rft.artnum=1946&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-024-13740-9&rft_dat=%3Cproquest_cross%3E3119814154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119814154&rft_id=info:pmid/&rfr_iscdi=true