Flowlogue: A Novel Framework for Synthetic Dialogue Generation With Structured Flow From Text Passages

Dialogue systems play a pivotal role in domains ranging from customer service to virtual assistance and education, using natural language to deliver information and resolve inquiries. Integrating Large Language Models (LLMs) has significantly boosted their capabilities and applications, underscoring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.151920-151929
Hauptverfasser: Kim, Yongil, Hwang, Yerin, Bae, Hyunkyung, Kang, Taegwan, Jung, Kyomin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151929
container_issue
container_start_page 151920
container_title IEEE access
container_volume 12
creator Kim, Yongil
Hwang, Yerin
Bae, Hyunkyung
Kang, Taegwan
Jung, Kyomin
description Dialogue systems play a pivotal role in domains ranging from customer service to virtual assistance and education, using natural language to deliver information and resolve inquiries. Integrating Large Language Models (LLMs) has significantly boosted their capabilities and applications, underscoring their potential to facilitate more nuanced human-computer interactions. Despite these advances, a significant challenge persists in curated dialogue data scarcity, especially in Conversational Question Answering (ConvQA) systems that require domain-specific information. Traditional Passage to Dialogue (P2D) methods attempt to mitigate this by converting textual passages into dialogue form but often need help with issues such as unnatural responses and information redundancy due to the direct use of passage sentences as dialogue answers. To overcome these limitations, we introduce Flowlogue, a novel ConvQA framework that enhances dialogue generation by merging related sentences within passages to maintain natural flow and coherence. This approach leverages LLMs to generate questions and contextually relevant answers based on newly formed dialogue flows, significantly improving the quality and relevance of dialogues compared to existing P2D methods. Our experimental results, validated through reference-free metrics and GPT-4 evaluations, confirm that Flowlogue produces superior dialogues, establishing a robust framework for generating natural, high-quality ConvQA dialogues that effectively harness the depth and nuance of human conversations.
doi_str_mv 10.1109/ACCESS.2024.3409377
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3119786990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10547251</ieee_id><doaj_id>oai_doaj_org_article_922a80b2093f4c1ab49d236296fef552</doaj_id><sourcerecordid>3119786990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-8d8c53e320f907c88ebb37d6edd51b7992f6947b1366b46501cbfa72d754f9963</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRUGp_gT4EfG7NZZNsfCu1VUFUqOJjyO5O6tZtU5Osl39v6oqYlwnDOd8kc7LshOAxIVidT6bT2WIxppjmY5ZjxaTcy44oEWrEOBP7_-6H2TCEFU6nSC0ujzI7b91H65YdXKAJunPv0KK5N2v4cP4VWefR4msTXyA2FbpszI8SXcEGvImN26DnJr6gRfRdFTsPNdrhEsCt0SN8RvRgQjBLCMfZgTVtgOFvHWRP89nj9Hp0e391M53cjipaqDgq6qLiDBjFVmFZFQWUJZO1gLrmpJRKUStULkvChChzwTGpSmskrSXPrVKCDbKbnls7s9Jb36yN_9LONPqn4fxSG5_-0oJWlJoClzQtzOYVMWWuasoEVcKC5Zwm1lnP2nr31kGIeuU6v0nP14wQJQuhFE4q1qsq70LwYP-mEqx3-eg-H73LR__mk1ynvasBgH8OnkvKCfsGx2SLTA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119786990</pqid></control><display><type>article</type><title>Flowlogue: A Novel Framework for Synthetic Dialogue Generation With Structured Flow From Text Passages</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Yongil ; Hwang, Yerin ; Bae, Hyunkyung ; Kang, Taegwan ; Jung, Kyomin</creator><creatorcontrib>Kim, Yongil ; Hwang, Yerin ; Bae, Hyunkyung ; Kang, Taegwan ; Jung, Kyomin</creatorcontrib><description>Dialogue systems play a pivotal role in domains ranging from customer service to virtual assistance and education, using natural language to deliver information and resolve inquiries. Integrating Large Language Models (LLMs) has significantly boosted their capabilities and applications, underscoring their potential to facilitate more nuanced human-computer interactions. Despite these advances, a significant challenge persists in curated dialogue data scarcity, especially in Conversational Question Answering (ConvQA) systems that require domain-specific information. Traditional Passage to Dialogue (P2D) methods attempt to mitigate this by converting textual passages into dialogue form but often need help with issues such as unnatural responses and information redundancy due to the direct use of passage sentences as dialogue answers. To overcome these limitations, we introduce Flowlogue, a novel ConvQA framework that enhances dialogue generation by merging related sentences within passages to maintain natural flow and coherence. This approach leverages LLMs to generate questions and contextually relevant answers based on newly formed dialogue flows, significantly improving the quality and relevance of dialogues compared to existing P2D methods. Our experimental results, validated through reference-free metrics and GPT-4 evaluations, confirm that Flowlogue produces superior dialogues, establishing a robust framework for generating natural, high-quality ConvQA dialogues that effectively harness the depth and nuance of human conversations.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3409377</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Coherence ; Conversational question answering ; Customer services ; data generation framework ; dialogue system ; Distance measurement ; Large language models ; Meters ; Natural language processing ; Oral communication ; Question answering (information retrieval) ; Questions ; Redundancy ; Sentences ; Speech recognition ; synthetic dialogue generation</subject><ispartof>IEEE access, 2024, Vol.12, p.151920-151929</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-8d8c53e320f907c88ebb37d6edd51b7992f6947b1366b46501cbfa72d754f9963</cites><orcidid>0000-0003-2547-7051 ; 0000-0003-0458-5280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10547251$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Kim, Yongil</creatorcontrib><creatorcontrib>Hwang, Yerin</creatorcontrib><creatorcontrib>Bae, Hyunkyung</creatorcontrib><creatorcontrib>Kang, Taegwan</creatorcontrib><creatorcontrib>Jung, Kyomin</creatorcontrib><title>Flowlogue: A Novel Framework for Synthetic Dialogue Generation With Structured Flow From Text Passages</title><title>IEEE access</title><addtitle>Access</addtitle><description>Dialogue systems play a pivotal role in domains ranging from customer service to virtual assistance and education, using natural language to deliver information and resolve inquiries. Integrating Large Language Models (LLMs) has significantly boosted their capabilities and applications, underscoring their potential to facilitate more nuanced human-computer interactions. Despite these advances, a significant challenge persists in curated dialogue data scarcity, especially in Conversational Question Answering (ConvQA) systems that require domain-specific information. Traditional Passage to Dialogue (P2D) methods attempt to mitigate this by converting textual passages into dialogue form but often need help with issues such as unnatural responses and information redundancy due to the direct use of passage sentences as dialogue answers. To overcome these limitations, we introduce Flowlogue, a novel ConvQA framework that enhances dialogue generation by merging related sentences within passages to maintain natural flow and coherence. This approach leverages LLMs to generate questions and contextually relevant answers based on newly formed dialogue flows, significantly improving the quality and relevance of dialogues compared to existing P2D methods. Our experimental results, validated through reference-free metrics and GPT-4 evaluations, confirm that Flowlogue produces superior dialogues, establishing a robust framework for generating natural, high-quality ConvQA dialogues that effectively harness the depth and nuance of human conversations.</description><subject>Coherence</subject><subject>Conversational question answering</subject><subject>Customer services</subject><subject>data generation framework</subject><subject>dialogue system</subject><subject>Distance measurement</subject><subject>Large language models</subject><subject>Meters</subject><subject>Natural language processing</subject><subject>Oral communication</subject><subject>Question answering (information retrieval)</subject><subject>Questions</subject><subject>Redundancy</subject><subject>Sentences</subject><subject>Speech recognition</subject><subject>synthetic dialogue generation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRUGp_gT4EfG7NZZNsfCu1VUFUqOJjyO5O6tZtU5Osl39v6oqYlwnDOd8kc7LshOAxIVidT6bT2WIxppjmY5ZjxaTcy44oEWrEOBP7_-6H2TCEFU6nSC0ujzI7b91H65YdXKAJunPv0KK5N2v4cP4VWefR4msTXyA2FbpszI8SXcEGvImN26DnJr6gRfRdFTsPNdrhEsCt0SN8RvRgQjBLCMfZgTVtgOFvHWRP89nj9Hp0e391M53cjipaqDgq6qLiDBjFVmFZFQWUJZO1gLrmpJRKUStULkvChChzwTGpSmskrSXPrVKCDbKbnls7s9Jb36yN_9LONPqn4fxSG5_-0oJWlJoClzQtzOYVMWWuasoEVcKC5Zwm1lnP2nr31kGIeuU6v0nP14wQJQuhFE4q1qsq70LwYP-mEqx3-eg-H73LR__mk1ynvasBgH8OnkvKCfsGx2SLTA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kim, Yongil</creator><creator>Hwang, Yerin</creator><creator>Bae, Hyunkyung</creator><creator>Kang, Taegwan</creator><creator>Jung, Kyomin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2547-7051</orcidid><orcidid>https://orcid.org/0000-0003-0458-5280</orcidid></search><sort><creationdate>2024</creationdate><title>Flowlogue: A Novel Framework for Synthetic Dialogue Generation With Structured Flow From Text Passages</title><author>Kim, Yongil ; Hwang, Yerin ; Bae, Hyunkyung ; Kang, Taegwan ; Jung, Kyomin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-8d8c53e320f907c88ebb37d6edd51b7992f6947b1366b46501cbfa72d754f9963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coherence</topic><topic>Conversational question answering</topic><topic>Customer services</topic><topic>data generation framework</topic><topic>dialogue system</topic><topic>Distance measurement</topic><topic>Large language models</topic><topic>Meters</topic><topic>Natural language processing</topic><topic>Oral communication</topic><topic>Question answering (information retrieval)</topic><topic>Questions</topic><topic>Redundancy</topic><topic>Sentences</topic><topic>Speech recognition</topic><topic>synthetic dialogue generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yongil</creatorcontrib><creatorcontrib>Hwang, Yerin</creatorcontrib><creatorcontrib>Bae, Hyunkyung</creatorcontrib><creatorcontrib>Kang, Taegwan</creatorcontrib><creatorcontrib>Jung, Kyomin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yongil</au><au>Hwang, Yerin</au><au>Bae, Hyunkyung</au><au>Kang, Taegwan</au><au>Jung, Kyomin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flowlogue: A Novel Framework for Synthetic Dialogue Generation With Structured Flow From Text Passages</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>151920</spage><epage>151929</epage><pages>151920-151929</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Dialogue systems play a pivotal role in domains ranging from customer service to virtual assistance and education, using natural language to deliver information and resolve inquiries. Integrating Large Language Models (LLMs) has significantly boosted their capabilities and applications, underscoring their potential to facilitate more nuanced human-computer interactions. Despite these advances, a significant challenge persists in curated dialogue data scarcity, especially in Conversational Question Answering (ConvQA) systems that require domain-specific information. Traditional Passage to Dialogue (P2D) methods attempt to mitigate this by converting textual passages into dialogue form but often need help with issues such as unnatural responses and information redundancy due to the direct use of passage sentences as dialogue answers. To overcome these limitations, we introduce Flowlogue, a novel ConvQA framework that enhances dialogue generation by merging related sentences within passages to maintain natural flow and coherence. This approach leverages LLMs to generate questions and contextually relevant answers based on newly formed dialogue flows, significantly improving the quality and relevance of dialogues compared to existing P2D methods. Our experimental results, validated through reference-free metrics and GPT-4 evaluations, confirm that Flowlogue produces superior dialogues, establishing a robust framework for generating natural, high-quality ConvQA dialogues that effectively harness the depth and nuance of human conversations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3409377</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2547-7051</orcidid><orcidid>https://orcid.org/0000-0003-0458-5280</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.151920-151929
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3119786990
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Coherence
Conversational question answering
Customer services
data generation framework
dialogue system
Distance measurement
Large language models
Meters
Natural language processing
Oral communication
Question answering (information retrieval)
Questions
Redundancy
Sentences
Speech recognition
synthetic dialogue generation
title Flowlogue: A Novel Framework for Synthetic Dialogue Generation With Structured Flow From Text Passages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flowlogue:%20A%20Novel%20Framework%20for%20Synthetic%20Dialogue%20Generation%20With%20Structured%20Flow%20From%20Text%20Passages&rft.jtitle=IEEE%20access&rft.au=Kim,%20Yongil&rft.date=2024&rft.volume=12&rft.spage=151920&rft.epage=151929&rft.pages=151920-151929&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3409377&rft_dat=%3Cproquest_doaj_%3E3119786990%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119786990&rft_id=info:pmid/&rft_ieee_id=10547251&rft_doaj_id=oai_doaj_org_article_922a80b2093f4c1ab49d236296fef552&rfr_iscdi=true