Flowlogue: A Novel Framework for Synthetic Dialogue Generation With Structured Flow From Text Passages
Dialogue systems play a pivotal role in domains ranging from customer service to virtual assistance and education, using natural language to deliver information and resolve inquiries. Integrating Large Language Models (LLMs) has significantly boosted their capabilities and applications, underscoring...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.151920-151929 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 151929 |
---|---|
container_issue | |
container_start_page | 151920 |
container_title | IEEE access |
container_volume | 12 |
creator | Kim, Yongil Hwang, Yerin Bae, Hyunkyung Kang, Taegwan Jung, Kyomin |
description | Dialogue systems play a pivotal role in domains ranging from customer service to virtual assistance and education, using natural language to deliver information and resolve inquiries. Integrating Large Language Models (LLMs) has significantly boosted their capabilities and applications, underscoring their potential to facilitate more nuanced human-computer interactions. Despite these advances, a significant challenge persists in curated dialogue data scarcity, especially in Conversational Question Answering (ConvQA) systems that require domain-specific information. Traditional Passage to Dialogue (P2D) methods attempt to mitigate this by converting textual passages into dialogue form but often need help with issues such as unnatural responses and information redundancy due to the direct use of passage sentences as dialogue answers. To overcome these limitations, we introduce Flowlogue, a novel ConvQA framework that enhances dialogue generation by merging related sentences within passages to maintain natural flow and coherence. This approach leverages LLMs to generate questions and contextually relevant answers based on newly formed dialogue flows, significantly improving the quality and relevance of dialogues compared to existing P2D methods. Our experimental results, validated through reference-free metrics and GPT-4 evaluations, confirm that Flowlogue produces superior dialogues, establishing a robust framework for generating natural, high-quality ConvQA dialogues that effectively harness the depth and nuance of human conversations. |
doi_str_mv | 10.1109/ACCESS.2024.3409377 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3119786990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10547251</ieee_id><doaj_id>oai_doaj_org_article_922a80b2093f4c1ab49d236296fef552</doaj_id><sourcerecordid>3119786990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-8d8c53e320f907c88ebb37d6edd51b7992f6947b1366b46501cbfa72d754f9963</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRUGp_gT4EfG7NZZNsfCu1VUFUqOJjyO5O6tZtU5Osl39v6oqYlwnDOd8kc7LshOAxIVidT6bT2WIxppjmY5ZjxaTcy44oEWrEOBP7_-6H2TCEFU6nSC0ujzI7b91H65YdXKAJunPv0KK5N2v4cP4VWefR4msTXyA2FbpszI8SXcEGvImN26DnJr6gRfRdFTsPNdrhEsCt0SN8RvRgQjBLCMfZgTVtgOFvHWRP89nj9Hp0e391M53cjipaqDgq6qLiDBjFVmFZFQWUJZO1gLrmpJRKUStULkvChChzwTGpSmskrSXPrVKCDbKbnls7s9Jb36yN_9LONPqn4fxSG5_-0oJWlJoClzQtzOYVMWWuasoEVcKC5Zwm1lnP2nr31kGIeuU6v0nP14wQJQuhFE4q1qsq70LwYP-mEqx3-eg-H73LR__mk1ynvasBgH8OnkvKCfsGx2SLTA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119786990</pqid></control><display><type>article</type><title>Flowlogue: A Novel Framework for Synthetic Dialogue Generation With Structured Flow From Text Passages</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Yongil ; Hwang, Yerin ; Bae, Hyunkyung ; Kang, Taegwan ; Jung, Kyomin</creator><creatorcontrib>Kim, Yongil ; Hwang, Yerin ; Bae, Hyunkyung ; Kang, Taegwan ; Jung, Kyomin</creatorcontrib><description>Dialogue systems play a pivotal role in domains ranging from customer service to virtual assistance and education, using natural language to deliver information and resolve inquiries. Integrating Large Language Models (LLMs) has significantly boosted their capabilities and applications, underscoring their potential to facilitate more nuanced human-computer interactions. Despite these advances, a significant challenge persists in curated dialogue data scarcity, especially in Conversational Question Answering (ConvQA) systems that require domain-specific information. Traditional Passage to Dialogue (P2D) methods attempt to mitigate this by converting textual passages into dialogue form but often need help with issues such as unnatural responses and information redundancy due to the direct use of passage sentences as dialogue answers. To overcome these limitations, we introduce Flowlogue, a novel ConvQA framework that enhances dialogue generation by merging related sentences within passages to maintain natural flow and coherence. This approach leverages LLMs to generate questions and contextually relevant answers based on newly formed dialogue flows, significantly improving the quality and relevance of dialogues compared to existing P2D methods. Our experimental results, validated through reference-free metrics and GPT-4 evaluations, confirm that Flowlogue produces superior dialogues, establishing a robust framework for generating natural, high-quality ConvQA dialogues that effectively harness the depth and nuance of human conversations.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3409377</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Coherence ; Conversational question answering ; Customer services ; data generation framework ; dialogue system ; Distance measurement ; Large language models ; Meters ; Natural language processing ; Oral communication ; Question answering (information retrieval) ; Questions ; Redundancy ; Sentences ; Speech recognition ; synthetic dialogue generation</subject><ispartof>IEEE access, 2024, Vol.12, p.151920-151929</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-8d8c53e320f907c88ebb37d6edd51b7992f6947b1366b46501cbfa72d754f9963</cites><orcidid>0000-0003-2547-7051 ; 0000-0003-0458-5280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10547251$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Kim, Yongil</creatorcontrib><creatorcontrib>Hwang, Yerin</creatorcontrib><creatorcontrib>Bae, Hyunkyung</creatorcontrib><creatorcontrib>Kang, Taegwan</creatorcontrib><creatorcontrib>Jung, Kyomin</creatorcontrib><title>Flowlogue: A Novel Framework for Synthetic Dialogue Generation With Structured Flow From Text Passages</title><title>IEEE access</title><addtitle>Access</addtitle><description>Dialogue systems play a pivotal role in domains ranging from customer service to virtual assistance and education, using natural language to deliver information and resolve inquiries. Integrating Large Language Models (LLMs) has significantly boosted their capabilities and applications, underscoring their potential to facilitate more nuanced human-computer interactions. Despite these advances, a significant challenge persists in curated dialogue data scarcity, especially in Conversational Question Answering (ConvQA) systems that require domain-specific information. Traditional Passage to Dialogue (P2D) methods attempt to mitigate this by converting textual passages into dialogue form but often need help with issues such as unnatural responses and information redundancy due to the direct use of passage sentences as dialogue answers. To overcome these limitations, we introduce Flowlogue, a novel ConvQA framework that enhances dialogue generation by merging related sentences within passages to maintain natural flow and coherence. This approach leverages LLMs to generate questions and contextually relevant answers based on newly formed dialogue flows, significantly improving the quality and relevance of dialogues compared to existing P2D methods. Our experimental results, validated through reference-free metrics and GPT-4 evaluations, confirm that Flowlogue produces superior dialogues, establishing a robust framework for generating natural, high-quality ConvQA dialogues that effectively harness the depth and nuance of human conversations.</description><subject>Coherence</subject><subject>Conversational question answering</subject><subject>Customer services</subject><subject>data generation framework</subject><subject>dialogue system</subject><subject>Distance measurement</subject><subject>Large language models</subject><subject>Meters</subject><subject>Natural language processing</subject><subject>Oral communication</subject><subject>Question answering (information retrieval)</subject><subject>Questions</subject><subject>Redundancy</subject><subject>Sentences</subject><subject>Speech recognition</subject><subject>synthetic dialogue generation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRUGp_gT4EfG7NZZNsfCu1VUFUqOJjyO5O6tZtU5Osl39v6oqYlwnDOd8kc7LshOAxIVidT6bT2WIxppjmY5ZjxaTcy44oEWrEOBP7_-6H2TCEFU6nSC0ujzI7b91H65YdXKAJunPv0KK5N2v4cP4VWefR4msTXyA2FbpszI8SXcEGvImN26DnJr6gRfRdFTsPNdrhEsCt0SN8RvRgQjBLCMfZgTVtgOFvHWRP89nj9Hp0e391M53cjipaqDgq6qLiDBjFVmFZFQWUJZO1gLrmpJRKUStULkvChChzwTGpSmskrSXPrVKCDbKbnls7s9Jb36yN_9LONPqn4fxSG5_-0oJWlJoClzQtzOYVMWWuasoEVcKC5Zwm1lnP2nr31kGIeuU6v0nP14wQJQuhFE4q1qsq70LwYP-mEqx3-eg-H73LR__mk1ynvasBgH8OnkvKCfsGx2SLTA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kim, Yongil</creator><creator>Hwang, Yerin</creator><creator>Bae, Hyunkyung</creator><creator>Kang, Taegwan</creator><creator>Jung, Kyomin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2547-7051</orcidid><orcidid>https://orcid.org/0000-0003-0458-5280</orcidid></search><sort><creationdate>2024</creationdate><title>Flowlogue: A Novel Framework for Synthetic Dialogue Generation With Structured Flow From Text Passages</title><author>Kim, Yongil ; Hwang, Yerin ; Bae, Hyunkyung ; Kang, Taegwan ; Jung, Kyomin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-8d8c53e320f907c88ebb37d6edd51b7992f6947b1366b46501cbfa72d754f9963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coherence</topic><topic>Conversational question answering</topic><topic>Customer services</topic><topic>data generation framework</topic><topic>dialogue system</topic><topic>Distance measurement</topic><topic>Large language models</topic><topic>Meters</topic><topic>Natural language processing</topic><topic>Oral communication</topic><topic>Question answering (information retrieval)</topic><topic>Questions</topic><topic>Redundancy</topic><topic>Sentences</topic><topic>Speech recognition</topic><topic>synthetic dialogue generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yongil</creatorcontrib><creatorcontrib>Hwang, Yerin</creatorcontrib><creatorcontrib>Bae, Hyunkyung</creatorcontrib><creatorcontrib>Kang, Taegwan</creatorcontrib><creatorcontrib>Jung, Kyomin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yongil</au><au>Hwang, Yerin</au><au>Bae, Hyunkyung</au><au>Kang, Taegwan</au><au>Jung, Kyomin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flowlogue: A Novel Framework for Synthetic Dialogue Generation With Structured Flow From Text Passages</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>151920</spage><epage>151929</epage><pages>151920-151929</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Dialogue systems play a pivotal role in domains ranging from customer service to virtual assistance and education, using natural language to deliver information and resolve inquiries. Integrating Large Language Models (LLMs) has significantly boosted their capabilities and applications, underscoring their potential to facilitate more nuanced human-computer interactions. Despite these advances, a significant challenge persists in curated dialogue data scarcity, especially in Conversational Question Answering (ConvQA) systems that require domain-specific information. Traditional Passage to Dialogue (P2D) methods attempt to mitigate this by converting textual passages into dialogue form but often need help with issues such as unnatural responses and information redundancy due to the direct use of passage sentences as dialogue answers. To overcome these limitations, we introduce Flowlogue, a novel ConvQA framework that enhances dialogue generation by merging related sentences within passages to maintain natural flow and coherence. This approach leverages LLMs to generate questions and contextually relevant answers based on newly formed dialogue flows, significantly improving the quality and relevance of dialogues compared to existing P2D methods. Our experimental results, validated through reference-free metrics and GPT-4 evaluations, confirm that Flowlogue produces superior dialogues, establishing a robust framework for generating natural, high-quality ConvQA dialogues that effectively harness the depth and nuance of human conversations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3409377</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2547-7051</orcidid><orcidid>https://orcid.org/0000-0003-0458-5280</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.151920-151929 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3119786990 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Coherence Conversational question answering Customer services data generation framework dialogue system Distance measurement Large language models Meters Natural language processing Oral communication Question answering (information retrieval) Questions Redundancy Sentences Speech recognition synthetic dialogue generation |
title | Flowlogue: A Novel Framework for Synthetic Dialogue Generation With Structured Flow From Text Passages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flowlogue:%20A%20Novel%20Framework%20for%20Synthetic%20Dialogue%20Generation%20With%20Structured%20Flow%20From%20Text%20Passages&rft.jtitle=IEEE%20access&rft.au=Kim,%20Yongil&rft.date=2024&rft.volume=12&rft.spage=151920&rft.epage=151929&rft.pages=151920-151929&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3409377&rft_dat=%3Cproquest_doaj_%3E3119786990%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119786990&rft_id=info:pmid/&rft_ieee_id=10547251&rft_doaj_id=oai_doaj_org_article_922a80b2093f4c1ab49d236296fef552&rfr_iscdi=true |