AI-Driven Statistical Modeling for Social Network Analysis
In this paper, we present a novel AI-driven statistical modeling approach for social network analysis, specifically focusing on information dissemination forecasting. The proposed Paradigm-Conscious Bistream Dissemination Framework (PCBDF) addresses the limitations of existing models by simultaneous...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.152766-152776 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 152776 |
---|---|
container_issue | |
container_start_page | 152766 |
container_title | IEEE access |
container_volume | 12 |
creator | Zhang, Min |
description | In this paper, we present a novel AI-driven statistical modeling approach for social network analysis, specifically focusing on information dissemination forecasting. The proposed Paradigm-Conscious Bistream Dissemination Framework (PCBDF) addresses the limitations of existing models by simultaneously capturing dynamic customer preferences and chain dependencies. Our framework leverages bistream graph neural networks to separately learn customer and chain embeddings. Specifically, the dynamic graph convolutional network captures customer repost preferences at various granularities, while the hyper-graph convolutional network learns chain hypergraphs and customer relationships. By integrating paradigms of chain embeddings, we enhance the accuracy of information dissemination forecasting. Quantitative evaluations on multiple datasets demonstrate that PCBDF achieves significant improvements over state-of-the-art models, with an increase in mean average precision by up to 14.43% and in Hits scores by up to 16.11% across multiple datasets. |
doi_str_mv | 10.1109/ACCESS.2024.3477490 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3119786964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10713342</ieee_id><doaj_id>oai_doaj_org_article_b13340228a32400abc13ca8143cf9436</doaj_id><sourcerecordid>3119786964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-81d02644e282443b3d4b21526215de98b56347facc7d311e9e88dd430be929733</originalsourceid><addsrcrecordid>eNpNUEFOwzAQtBBIVNAXwCES5xTb6yQ2t6gUqFTgEDhbjuNULqEudgrq73FJherDejXamZ0dhK4InhCCxW05nc6qakIxZRNgRcEEPkEjSnKRQgb56VF_jsYhrHB8PEJZMUJ35Ty99_bbrJOqV70NvdWqS55dYzq7Xiat80nltI3Yi-l_nP9IyrXqdsGGS3TWqi6Y8eG_QO8Ps7fpU7p4fZxPy0WqKRd9ykmDac6YoZwyBjU0rKYko3ksjRG8zvLoulVaFw0QYoThvGkY4NoIKgqACzQfdBunVnLj7afyO-mUlX-A80upfLTdGVkTAIYp5Qoow1jVmoBWnDDQrWCQR62bQWvj3dfWhF6u3NbHg4KMu0XBc5GzOAXDlPYuBG_a_60Ey33mcshc7jOXh8wj63pgWWPMEaPYm6LwCxIGee4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119786964</pqid></control><display><type>article</type><title>AI-Driven Statistical Modeling for Social Network Analysis</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Min</creator><creatorcontrib>Zhang, Min</creatorcontrib><description>In this paper, we present a novel AI-driven statistical modeling approach for social network analysis, specifically focusing on information dissemination forecasting. The proposed Paradigm-Conscious Bistream Dissemination Framework (PCBDF) addresses the limitations of existing models by simultaneously capturing dynamic customer preferences and chain dependencies. Our framework leverages bistream graph neural networks to separately learn customer and chain embeddings. Specifically, the dynamic graph convolutional network captures customer repost preferences at various granularities, while the hyper-graph convolutional network learns chain hypergraphs and customer relationships. By integrating paradigms of chain embeddings, we enhance the accuracy of information dissemination forecasting. Quantitative evaluations on multiple datasets demonstrate that PCBDF achieves significant improvements over state-of-the-art models, with an increase in mean average precision by up to 14.43% and in Hits scores by up to 16.11% across multiple datasets.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3477490</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial intelligence ; Artificial neural networks ; Customer satisfaction ; Customers ; Data models ; Datasets ; Deep learning ; Feature extraction ; Forecasting ; Graph convolutional networks ; Graph neural networks ; Graph theory ; Indexes ; Information dissemination ; information dissemination forecasting ; Mathematical models ; mathematical statistical modeling ; Network analysis ; Predictive models ; Probabilistic logic ; social network analysis ; Social networking (online) ; Social networks ; Statistical analysis ; Statistical models</subject><ispartof>IEEE access, 2024, Vol.12, p.152766-152776</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-81d02644e282443b3d4b21526215de98b56347facc7d311e9e88dd430be929733</cites><orcidid>0009-0005-4697-9888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10713342$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2106,4028,27642,27932,27933,27934,54942</link.rule.ids></links><search><creatorcontrib>Zhang, Min</creatorcontrib><title>AI-Driven Statistical Modeling for Social Network Analysis</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we present a novel AI-driven statistical modeling approach for social network analysis, specifically focusing on information dissemination forecasting. The proposed Paradigm-Conscious Bistream Dissemination Framework (PCBDF) addresses the limitations of existing models by simultaneously capturing dynamic customer preferences and chain dependencies. Our framework leverages bistream graph neural networks to separately learn customer and chain embeddings. Specifically, the dynamic graph convolutional network captures customer repost preferences at various granularities, while the hyper-graph convolutional network learns chain hypergraphs and customer relationships. By integrating paradigms of chain embeddings, we enhance the accuracy of information dissemination forecasting. Quantitative evaluations on multiple datasets demonstrate that PCBDF achieves significant improvements over state-of-the-art models, with an increase in mean average precision by up to 14.43% and in Hits scores by up to 16.11% across multiple datasets.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Customer satisfaction</subject><subject>Customers</subject><subject>Data models</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Forecasting</subject><subject>Graph convolutional networks</subject><subject>Graph neural networks</subject><subject>Graph theory</subject><subject>Indexes</subject><subject>Information dissemination</subject><subject>information dissemination forecasting</subject><subject>Mathematical models</subject><subject>mathematical statistical modeling</subject><subject>Network analysis</subject><subject>Predictive models</subject><subject>Probabilistic logic</subject><subject>social network analysis</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUEFOwzAQtBBIVNAXwCES5xTb6yQ2t6gUqFTgEDhbjuNULqEudgrq73FJherDejXamZ0dhK4InhCCxW05nc6qakIxZRNgRcEEPkEjSnKRQgb56VF_jsYhrHB8PEJZMUJ35Ty99_bbrJOqV70NvdWqS55dYzq7Xiat80nltI3Yi-l_nP9IyrXqdsGGS3TWqi6Y8eG_QO8Ps7fpU7p4fZxPy0WqKRd9ykmDac6YoZwyBjU0rKYko3ksjRG8zvLoulVaFw0QYoThvGkY4NoIKgqACzQfdBunVnLj7afyO-mUlX-A80upfLTdGVkTAIYp5Qoow1jVmoBWnDDQrWCQR62bQWvj3dfWhF6u3NbHg4KMu0XBc5GzOAXDlPYuBG_a_60Ey33mcshc7jOXh8wj63pgWWPMEaPYm6LwCxIGee4</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhang, Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-4697-9888</orcidid></search><sort><creationdate>2024</creationdate><title>AI-Driven Statistical Modeling for Social Network Analysis</title><author>Zhang, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-81d02644e282443b3d4b21526215de98b56347facc7d311e9e88dd430be929733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Customer satisfaction</topic><topic>Customers</topic><topic>Data models</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Forecasting</topic><topic>Graph convolutional networks</topic><topic>Graph neural networks</topic><topic>Graph theory</topic><topic>Indexes</topic><topic>Information dissemination</topic><topic>information dissemination forecasting</topic><topic>Mathematical models</topic><topic>mathematical statistical modeling</topic><topic>Network analysis</topic><topic>Predictive models</topic><topic>Probabilistic logic</topic><topic>social network analysis</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Driven Statistical Modeling for Social Network Analysis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>152766</spage><epage>152776</epage><pages>152766-152776</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we present a novel AI-driven statistical modeling approach for social network analysis, specifically focusing on information dissemination forecasting. The proposed Paradigm-Conscious Bistream Dissemination Framework (PCBDF) addresses the limitations of existing models by simultaneously capturing dynamic customer preferences and chain dependencies. Our framework leverages bistream graph neural networks to separately learn customer and chain embeddings. Specifically, the dynamic graph convolutional network captures customer repost preferences at various granularities, while the hyper-graph convolutional network learns chain hypergraphs and customer relationships. By integrating paradigms of chain embeddings, we enhance the accuracy of information dissemination forecasting. Quantitative evaluations on multiple datasets demonstrate that PCBDF achieves significant improvements over state-of-the-art models, with an increase in mean average precision by up to 14.43% and in Hits scores by up to 16.11% across multiple datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3477490</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0005-4697-9888</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.152766-152776 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3119786964 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Artificial intelligence Artificial neural networks Customer satisfaction Customers Data models Datasets Deep learning Feature extraction Forecasting Graph convolutional networks Graph neural networks Graph theory Indexes Information dissemination information dissemination forecasting Mathematical models mathematical statistical modeling Network analysis Predictive models Probabilistic logic social network analysis Social networking (online) Social networks Statistical analysis Statistical models |
title | AI-Driven Statistical Modeling for Social Network Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T12%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Driven%20Statistical%20Modeling%20for%20Social%20Network%20Analysis&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Min&rft.date=2024&rft.volume=12&rft.spage=152766&rft.epage=152776&rft.pages=152766-152776&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3477490&rft_dat=%3Cproquest_doaj_%3E3119786964%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119786964&rft_id=info:pmid/&rft_ieee_id=10713342&rft_doaj_id=oai_doaj_org_article_b13340228a32400abc13ca8143cf9436&rfr_iscdi=true |