AI-Driven Statistical Modeling for Social Network Analysis

In this paper, we present a novel AI-driven statistical modeling approach for social network analysis, specifically focusing on information dissemination forecasting. The proposed Paradigm-Conscious Bistream Dissemination Framework (PCBDF) addresses the limitations of existing models by simultaneous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.152766-152776
1. Verfasser: Zhang, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152776
container_issue
container_start_page 152766
container_title IEEE access
container_volume 12
creator Zhang, Min
description In this paper, we present a novel AI-driven statistical modeling approach for social network analysis, specifically focusing on information dissemination forecasting. The proposed Paradigm-Conscious Bistream Dissemination Framework (PCBDF) addresses the limitations of existing models by simultaneously capturing dynamic customer preferences and chain dependencies. Our framework leverages bistream graph neural networks to separately learn customer and chain embeddings. Specifically, the dynamic graph convolutional network captures customer repost preferences at various granularities, while the hyper-graph convolutional network learns chain hypergraphs and customer relationships. By integrating paradigms of chain embeddings, we enhance the accuracy of information dissemination forecasting. Quantitative evaluations on multiple datasets demonstrate that PCBDF achieves significant improvements over state-of-the-art models, with an increase in mean average precision by up to 14.43% and in Hits scores by up to 16.11% across multiple datasets.
doi_str_mv 10.1109/ACCESS.2024.3477490
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3119786964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10713342</ieee_id><doaj_id>oai_doaj_org_article_b13340228a32400abc13ca8143cf9436</doaj_id><sourcerecordid>3119786964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-81d02644e282443b3d4b21526215de98b56347facc7d311e9e88dd430be929733</originalsourceid><addsrcrecordid>eNpNUEFOwzAQtBBIVNAXwCES5xTb6yQ2t6gUqFTgEDhbjuNULqEudgrq73FJherDejXamZ0dhK4InhCCxW05nc6qakIxZRNgRcEEPkEjSnKRQgb56VF_jsYhrHB8PEJZMUJ35Ty99_bbrJOqV70NvdWqS55dYzq7Xiat80nltI3Yi-l_nP9IyrXqdsGGS3TWqi6Y8eG_QO8Ps7fpU7p4fZxPy0WqKRd9ykmDac6YoZwyBjU0rKYko3ksjRG8zvLoulVaFw0QYoThvGkY4NoIKgqACzQfdBunVnLj7afyO-mUlX-A80upfLTdGVkTAIYp5Qoow1jVmoBWnDDQrWCQR62bQWvj3dfWhF6u3NbHg4KMu0XBc5GzOAXDlPYuBG_a_60Ey33mcshc7jOXh8wj63pgWWPMEaPYm6LwCxIGee4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119786964</pqid></control><display><type>article</type><title>AI-Driven Statistical Modeling for Social Network Analysis</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Min</creator><creatorcontrib>Zhang, Min</creatorcontrib><description>In this paper, we present a novel AI-driven statistical modeling approach for social network analysis, specifically focusing on information dissemination forecasting. The proposed Paradigm-Conscious Bistream Dissemination Framework (PCBDF) addresses the limitations of existing models by simultaneously capturing dynamic customer preferences and chain dependencies. Our framework leverages bistream graph neural networks to separately learn customer and chain embeddings. Specifically, the dynamic graph convolutional network captures customer repost preferences at various granularities, while the hyper-graph convolutional network learns chain hypergraphs and customer relationships. By integrating paradigms of chain embeddings, we enhance the accuracy of information dissemination forecasting. Quantitative evaluations on multiple datasets demonstrate that PCBDF achieves significant improvements over state-of-the-art models, with an increase in mean average precision by up to 14.43% and in Hits scores by up to 16.11% across multiple datasets.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3477490</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial intelligence ; Artificial neural networks ; Customer satisfaction ; Customers ; Data models ; Datasets ; Deep learning ; Feature extraction ; Forecasting ; Graph convolutional networks ; Graph neural networks ; Graph theory ; Indexes ; Information dissemination ; information dissemination forecasting ; Mathematical models ; mathematical statistical modeling ; Network analysis ; Predictive models ; Probabilistic logic ; social network analysis ; Social networking (online) ; Social networks ; Statistical analysis ; Statistical models</subject><ispartof>IEEE access, 2024, Vol.12, p.152766-152776</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-81d02644e282443b3d4b21526215de98b56347facc7d311e9e88dd430be929733</cites><orcidid>0009-0005-4697-9888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10713342$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2106,4028,27642,27932,27933,27934,54942</link.rule.ids></links><search><creatorcontrib>Zhang, Min</creatorcontrib><title>AI-Driven Statistical Modeling for Social Network Analysis</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we present a novel AI-driven statistical modeling approach for social network analysis, specifically focusing on information dissemination forecasting. The proposed Paradigm-Conscious Bistream Dissemination Framework (PCBDF) addresses the limitations of existing models by simultaneously capturing dynamic customer preferences and chain dependencies. Our framework leverages bistream graph neural networks to separately learn customer and chain embeddings. Specifically, the dynamic graph convolutional network captures customer repost preferences at various granularities, while the hyper-graph convolutional network learns chain hypergraphs and customer relationships. By integrating paradigms of chain embeddings, we enhance the accuracy of information dissemination forecasting. Quantitative evaluations on multiple datasets demonstrate that PCBDF achieves significant improvements over state-of-the-art models, with an increase in mean average precision by up to 14.43% and in Hits scores by up to 16.11% across multiple datasets.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Customer satisfaction</subject><subject>Customers</subject><subject>Data models</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Forecasting</subject><subject>Graph convolutional networks</subject><subject>Graph neural networks</subject><subject>Graph theory</subject><subject>Indexes</subject><subject>Information dissemination</subject><subject>information dissemination forecasting</subject><subject>Mathematical models</subject><subject>mathematical statistical modeling</subject><subject>Network analysis</subject><subject>Predictive models</subject><subject>Probabilistic logic</subject><subject>social network analysis</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUEFOwzAQtBBIVNAXwCES5xTb6yQ2t6gUqFTgEDhbjuNULqEudgrq73FJherDejXamZ0dhK4InhCCxW05nc6qakIxZRNgRcEEPkEjSnKRQgb56VF_jsYhrHB8PEJZMUJ35Ty99_bbrJOqV70NvdWqS55dYzq7Xiat80nltI3Yi-l_nP9IyrXqdsGGS3TWqi6Y8eG_QO8Ps7fpU7p4fZxPy0WqKRd9ykmDac6YoZwyBjU0rKYko3ksjRG8zvLoulVaFw0QYoThvGkY4NoIKgqACzQfdBunVnLj7afyO-mUlX-A80upfLTdGVkTAIYp5Qoow1jVmoBWnDDQrWCQR62bQWvj3dfWhF6u3NbHg4KMu0XBc5GzOAXDlPYuBG_a_60Ey33mcshc7jOXh8wj63pgWWPMEaPYm6LwCxIGee4</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhang, Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-4697-9888</orcidid></search><sort><creationdate>2024</creationdate><title>AI-Driven Statistical Modeling for Social Network Analysis</title><author>Zhang, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-81d02644e282443b3d4b21526215de98b56347facc7d311e9e88dd430be929733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Customer satisfaction</topic><topic>Customers</topic><topic>Data models</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Forecasting</topic><topic>Graph convolutional networks</topic><topic>Graph neural networks</topic><topic>Graph theory</topic><topic>Indexes</topic><topic>Information dissemination</topic><topic>information dissemination forecasting</topic><topic>Mathematical models</topic><topic>mathematical statistical modeling</topic><topic>Network analysis</topic><topic>Predictive models</topic><topic>Probabilistic logic</topic><topic>social network analysis</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Driven Statistical Modeling for Social Network Analysis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>152766</spage><epage>152776</epage><pages>152766-152776</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we present a novel AI-driven statistical modeling approach for social network analysis, specifically focusing on information dissemination forecasting. The proposed Paradigm-Conscious Bistream Dissemination Framework (PCBDF) addresses the limitations of existing models by simultaneously capturing dynamic customer preferences and chain dependencies. Our framework leverages bistream graph neural networks to separately learn customer and chain embeddings. Specifically, the dynamic graph convolutional network captures customer repost preferences at various granularities, while the hyper-graph convolutional network learns chain hypergraphs and customer relationships. By integrating paradigms of chain embeddings, we enhance the accuracy of information dissemination forecasting. Quantitative evaluations on multiple datasets demonstrate that PCBDF achieves significant improvements over state-of-the-art models, with an increase in mean average precision by up to 14.43% and in Hits scores by up to 16.11% across multiple datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3477490</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0005-4697-9888</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.152766-152776
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3119786964
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Artificial intelligence
Artificial neural networks
Customer satisfaction
Customers
Data models
Datasets
Deep learning
Feature extraction
Forecasting
Graph convolutional networks
Graph neural networks
Graph theory
Indexes
Information dissemination
information dissemination forecasting
Mathematical models
mathematical statistical modeling
Network analysis
Predictive models
Probabilistic logic
social network analysis
Social networking (online)
Social networks
Statistical analysis
Statistical models
title AI-Driven Statistical Modeling for Social Network Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T12%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Driven%20Statistical%20Modeling%20for%20Social%20Network%20Analysis&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Min&rft.date=2024&rft.volume=12&rft.spage=152766&rft.epage=152776&rft.pages=152766-152776&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3477490&rft_dat=%3Cproquest_doaj_%3E3119786964%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119786964&rft_id=info:pmid/&rft_ieee_id=10713342&rft_doaj_id=oai_doaj_org_article_b13340228a32400abc13ca8143cf9436&rfr_iscdi=true