Identifying the Thermal-Conductivity Tensor of a Nitrogen Thermal Protection by the Iterative Regularization Method
Consideration is given to the method of parametric identification of a symmetric thermal-conductivity tensor for a cryogenic nitrogen thermal protection thermostatting an aluminum skeleton of a cylindrical nitrogen-filled vessel. This problem is solved as the problem of seeking the global minimum of...
Gespeichert in:
Veröffentlicht in: | Journal of engineering physics and thermophysics 2024-09, Vol.97 (5), p.1108-1120 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1120 |
---|---|
container_issue | 5 |
container_start_page | 1108 |
container_title | Journal of engineering physics and thermophysics |
container_volume | 97 |
creator | Borshchev, N. O. |
description | Consideration is given to the method of parametric identification of a symmetric thermal-conductivity tensor for a cryogenic nitrogen thermal protection thermostatting an aluminum skeleton of a cylindrical nitrogen-filled vessel. This problem is solved as the problem of seeking the global minimum of the root-mean-square residual functional between the theoretical field of temperatures and the registered maximum thermal-protection temperature. To this end, it is necessary to solve the “primal” problem of heat transfer between the thermal protective coating with a selected initial approximation of components of the thermal-conductivity vector and their basis functions taking account of their dependence on temperature. The method of conjugate directions has been selected as the most accurate optimization method of first order of convergence. To implement this method, it is necessary to find components of the gradient of the residual functional under study. The descent step in this method is sought from the minimum of the target functional at each computational iteration, which corresponds to the iterative regularization method. A criterion for the cessation of the iterative process is the superposition of errors that introduce ill-posedness into the formulation of the problem under study. |
doi_str_mv | 10.1007/s10891-024-02982-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119653467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119653467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-9804d9e41456d7d690c88f024db225c628f4078831a65acba11c032f904f0fd33</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhRdRsFb_gE8Bn1cnyV6SRyleCvWCVPAtpJtku6VNNEmF9debdhXffBhmYL5zhjlZdo7hEgPUVwED4zgHUqTijOT0IBvhsqY5q_HbYZqhIjlgUh5nJyGsAICzgo6yMFXaxs70nW1RXGo0X2q_ket84qzaNrH77GKP5toG55EzSKLHLnrXavtLomfvok6ks2jR7z2mUXuZpBq96Ha7lr77kvv9g45Lp06zIyPXQZ_99HH2enszn9zns6e76eR6ljcEIOacQaG4LnBRVqpWFYeGMZNeVAtCyqYizBRQM0axrErZLCTGDVBiOBQGjKJ0nF0Mvu_efWx1iGLltt6mk4JizKuSFlWdKDJQjXcheG3Eu-820vcCg9iFK4ZwRbos9uGKnTUdRCHBttX-z_of1Td3Y32x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119653467</pqid></control><display><type>article</type><title>Identifying the Thermal-Conductivity Tensor of a Nitrogen Thermal Protection by the Iterative Regularization Method</title><source>SpringerLink Journals - AutoHoldings</source><creator>Borshchev, N. O.</creator><creatorcontrib>Borshchev, N. O.</creatorcontrib><description>Consideration is given to the method of parametric identification of a symmetric thermal-conductivity tensor for a cryogenic nitrogen thermal protection thermostatting an aluminum skeleton of a cylindrical nitrogen-filled vessel. This problem is solved as the problem of seeking the global minimum of the root-mean-square residual functional between the theoretical field of temperatures and the registered maximum thermal-protection temperature. To this end, it is necessary to solve the “primal” problem of heat transfer between the thermal protective coating with a selected initial approximation of components of the thermal-conductivity vector and their basis functions taking account of their dependence on temperature. The method of conjugate directions has been selected as the most accurate optimization method of first order of convergence. To implement this method, it is necessary to find components of the gradient of the residual functional under study. The descent step in this method is sought from the minimum of the target functional at each computational iteration, which corresponds to the iterative regularization method. A criterion for the cessation of the iterative process is the superposition of errors that introduce ill-posedness into the formulation of the problem under study.</description><identifier>ISSN: 1062-0125</identifier><identifier>EISSN: 1573-871X</identifier><identifier>DOI: 10.1007/s10891-024-02982-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Basis functions ; Classical Mechanics ; Complex Systems ; Engineering ; Engineering Thermodynamics ; Functionals ; Heat and Mass Transfer ; Industrial Chemistry/Chemical Engineering ; Iterative methods ; Mathematical analysis ; Nitrogen ; Protective coatings ; Regularization ; Regularization methods ; Temperature dependence ; Tensors ; Thermal protection ; Thermodynamics</subject><ispartof>Journal of engineering physics and thermophysics, 2024-09, Vol.97 (5), p.1108-1120</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-9804d9e41456d7d690c88f024db225c628f4078831a65acba11c032f904f0fd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10891-024-02982-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10891-024-02982-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Borshchev, N. O.</creatorcontrib><title>Identifying the Thermal-Conductivity Tensor of a Nitrogen Thermal Protection by the Iterative Regularization Method</title><title>Journal of engineering physics and thermophysics</title><addtitle>J Eng Phys Thermophy</addtitle><description>Consideration is given to the method of parametric identification of a symmetric thermal-conductivity tensor for a cryogenic nitrogen thermal protection thermostatting an aluminum skeleton of a cylindrical nitrogen-filled vessel. This problem is solved as the problem of seeking the global minimum of the root-mean-square residual functional between the theoretical field of temperatures and the registered maximum thermal-protection temperature. To this end, it is necessary to solve the “primal” problem of heat transfer between the thermal protective coating with a selected initial approximation of components of the thermal-conductivity vector and their basis functions taking account of their dependence on temperature. The method of conjugate directions has been selected as the most accurate optimization method of first order of convergence. To implement this method, it is necessary to find components of the gradient of the residual functional under study. The descent step in this method is sought from the minimum of the target functional at each computational iteration, which corresponds to the iterative regularization method. A criterion for the cessation of the iterative process is the superposition of errors that introduce ill-posedness into the formulation of the problem under study.</description><subject>Basis functions</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Functionals</subject><subject>Heat and Mass Transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Nitrogen</subject><subject>Protective coatings</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Temperature dependence</subject><subject>Tensors</subject><subject>Thermal protection</subject><subject>Thermodynamics</subject><issn>1062-0125</issn><issn>1573-871X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhRdRsFb_gE8Bn1cnyV6SRyleCvWCVPAtpJtku6VNNEmF9debdhXffBhmYL5zhjlZdo7hEgPUVwED4zgHUqTijOT0IBvhsqY5q_HbYZqhIjlgUh5nJyGsAICzgo6yMFXaxs70nW1RXGo0X2q_ket84qzaNrH77GKP5toG55EzSKLHLnrXavtLomfvok6ks2jR7z2mUXuZpBq96Ha7lr77kvv9g45Lp06zIyPXQZ_99HH2enszn9zns6e76eR6ljcEIOacQaG4LnBRVqpWFYeGMZNeVAtCyqYizBRQM0axrErZLCTGDVBiOBQGjKJ0nF0Mvu_efWx1iGLltt6mk4JizKuSFlWdKDJQjXcheG3Eu-820vcCg9iFK4ZwRbos9uGKnTUdRCHBttX-z_of1Td3Y32x</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Borshchev, N. O.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>Identifying the Thermal-Conductivity Tensor of a Nitrogen Thermal Protection by the Iterative Regularization Method</title><author>Borshchev, N. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-9804d9e41456d7d690c88f024db225c628f4078831a65acba11c032f904f0fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Basis functions</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Functionals</topic><topic>Heat and Mass Transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Nitrogen</topic><topic>Protective coatings</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Temperature dependence</topic><topic>Tensors</topic><topic>Thermal protection</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borshchev, N. O.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of engineering physics and thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borshchev, N. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying the Thermal-Conductivity Tensor of a Nitrogen Thermal Protection by the Iterative Regularization Method</atitle><jtitle>Journal of engineering physics and thermophysics</jtitle><stitle>J Eng Phys Thermophy</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>97</volume><issue>5</issue><spage>1108</spage><epage>1120</epage><pages>1108-1120</pages><issn>1062-0125</issn><eissn>1573-871X</eissn><abstract>Consideration is given to the method of parametric identification of a symmetric thermal-conductivity tensor for a cryogenic nitrogen thermal protection thermostatting an aluminum skeleton of a cylindrical nitrogen-filled vessel. This problem is solved as the problem of seeking the global minimum of the root-mean-square residual functional between the theoretical field of temperatures and the registered maximum thermal-protection temperature. To this end, it is necessary to solve the “primal” problem of heat transfer between the thermal protective coating with a selected initial approximation of components of the thermal-conductivity vector and their basis functions taking account of their dependence on temperature. The method of conjugate directions has been selected as the most accurate optimization method of first order of convergence. To implement this method, it is necessary to find components of the gradient of the residual functional under study. The descent step in this method is sought from the minimum of the target functional at each computational iteration, which corresponds to the iterative regularization method. A criterion for the cessation of the iterative process is the superposition of errors that introduce ill-posedness into the formulation of the problem under study.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10891-024-02982-3</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1062-0125 |
ispartof | Journal of engineering physics and thermophysics, 2024-09, Vol.97 (5), p.1108-1120 |
issn | 1062-0125 1573-871X |
language | eng |
recordid | cdi_proquest_journals_3119653467 |
source | SpringerLink Journals - AutoHoldings |
subjects | Basis functions Classical Mechanics Complex Systems Engineering Engineering Thermodynamics Functionals Heat and Mass Transfer Industrial Chemistry/Chemical Engineering Iterative methods Mathematical analysis Nitrogen Protective coatings Regularization Regularization methods Temperature dependence Tensors Thermal protection Thermodynamics |
title | Identifying the Thermal-Conductivity Tensor of a Nitrogen Thermal Protection by the Iterative Regularization Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20the%20Thermal-Conductivity%20Tensor%20of%20a%20Nitrogen%20Thermal%20Protection%20by%20the%20Iterative%20Regularization%20Method&rft.jtitle=Journal%20of%20engineering%20physics%20and%20thermophysics&rft.au=Borshchev,%20N.%20O.&rft.date=2024-09-01&rft.volume=97&rft.issue=5&rft.spage=1108&rft.epage=1120&rft.pages=1108-1120&rft.issn=1062-0125&rft.eissn=1573-871X&rft_id=info:doi/10.1007/s10891-024-02982-3&rft_dat=%3Cproquest_cross%3E3119653467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119653467&rft_id=info:pmid/&rfr_iscdi=true |