Identifying the Thermal-Conductivity Tensor of a Nitrogen Thermal Protection by the Iterative Regularization Method

Consideration is given to the method of parametric identification of a symmetric thermal-conductivity tensor for a cryogenic nitrogen thermal protection thermostatting an aluminum skeleton of a cylindrical nitrogen-filled vessel. This problem is solved as the problem of seeking the global minimum of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering physics and thermophysics 2024-09, Vol.97 (5), p.1108-1120
1. Verfasser: Borshchev, N. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1120
container_issue 5
container_start_page 1108
container_title Journal of engineering physics and thermophysics
container_volume 97
creator Borshchev, N. O.
description Consideration is given to the method of parametric identification of a symmetric thermal-conductivity tensor for a cryogenic nitrogen thermal protection thermostatting an aluminum skeleton of a cylindrical nitrogen-filled vessel. This problem is solved as the problem of seeking the global minimum of the root-mean-square residual functional between the theoretical field of temperatures and the registered maximum thermal-protection temperature. To this end, it is necessary to solve the “primal” problem of heat transfer between the thermal protective coating with a selected initial approximation of components of the thermal-conductivity vector and their basis functions taking account of their dependence on temperature. The method of conjugate directions has been selected as the most accurate optimization method of first order of convergence. To implement this method, it is necessary to find components of the gradient of the residual functional under study. The descent step in this method is sought from the minimum of the target functional at each computational iteration, which corresponds to the iterative regularization method. A criterion for the cessation of the iterative process is the superposition of errors that introduce ill-posedness into the formulation of the problem under study.
doi_str_mv 10.1007/s10891-024-02982-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119653467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119653467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-9804d9e41456d7d690c88f024db225c628f4078831a65acba11c032f904f0fd33</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhRdRsFb_gE8Bn1cnyV6SRyleCvWCVPAtpJtku6VNNEmF9debdhXffBhmYL5zhjlZdo7hEgPUVwED4zgHUqTijOT0IBvhsqY5q_HbYZqhIjlgUh5nJyGsAICzgo6yMFXaxs70nW1RXGo0X2q_ket84qzaNrH77GKP5toG55EzSKLHLnrXavtLomfvok6ks2jR7z2mUXuZpBq96Ha7lr77kvv9g45Lp06zIyPXQZ_99HH2enszn9zns6e76eR6ljcEIOacQaG4LnBRVqpWFYeGMZNeVAtCyqYizBRQM0axrErZLCTGDVBiOBQGjKJ0nF0Mvu_efWx1iGLltt6mk4JizKuSFlWdKDJQjXcheG3Eu-820vcCg9iFK4ZwRbos9uGKnTUdRCHBttX-z_of1Td3Y32x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119653467</pqid></control><display><type>article</type><title>Identifying the Thermal-Conductivity Tensor of a Nitrogen Thermal Protection by the Iterative Regularization Method</title><source>SpringerLink Journals - AutoHoldings</source><creator>Borshchev, N. O.</creator><creatorcontrib>Borshchev, N. O.</creatorcontrib><description>Consideration is given to the method of parametric identification of a symmetric thermal-conductivity tensor for a cryogenic nitrogen thermal protection thermostatting an aluminum skeleton of a cylindrical nitrogen-filled vessel. This problem is solved as the problem of seeking the global minimum of the root-mean-square residual functional between the theoretical field of temperatures and the registered maximum thermal-protection temperature. To this end, it is necessary to solve the “primal” problem of heat transfer between the thermal protective coating with a selected initial approximation of components of the thermal-conductivity vector and their basis functions taking account of their dependence on temperature. The method of conjugate directions has been selected as the most accurate optimization method of first order of convergence. To implement this method, it is necessary to find components of the gradient of the residual functional under study. The descent step in this method is sought from the minimum of the target functional at each computational iteration, which corresponds to the iterative regularization method. A criterion for the cessation of the iterative process is the superposition of errors that introduce ill-posedness into the formulation of the problem under study.</description><identifier>ISSN: 1062-0125</identifier><identifier>EISSN: 1573-871X</identifier><identifier>DOI: 10.1007/s10891-024-02982-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Basis functions ; Classical Mechanics ; Complex Systems ; Engineering ; Engineering Thermodynamics ; Functionals ; Heat and Mass Transfer ; Industrial Chemistry/Chemical Engineering ; Iterative methods ; Mathematical analysis ; Nitrogen ; Protective coatings ; Regularization ; Regularization methods ; Temperature dependence ; Tensors ; Thermal protection ; Thermodynamics</subject><ispartof>Journal of engineering physics and thermophysics, 2024-09, Vol.97 (5), p.1108-1120</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-9804d9e41456d7d690c88f024db225c628f4078831a65acba11c032f904f0fd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10891-024-02982-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10891-024-02982-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Borshchev, N. O.</creatorcontrib><title>Identifying the Thermal-Conductivity Tensor of a Nitrogen Thermal Protection by the Iterative Regularization Method</title><title>Journal of engineering physics and thermophysics</title><addtitle>J Eng Phys Thermophy</addtitle><description>Consideration is given to the method of parametric identification of a symmetric thermal-conductivity tensor for a cryogenic nitrogen thermal protection thermostatting an aluminum skeleton of a cylindrical nitrogen-filled vessel. This problem is solved as the problem of seeking the global minimum of the root-mean-square residual functional between the theoretical field of temperatures and the registered maximum thermal-protection temperature. To this end, it is necessary to solve the “primal” problem of heat transfer between the thermal protective coating with a selected initial approximation of components of the thermal-conductivity vector and their basis functions taking account of their dependence on temperature. The method of conjugate directions has been selected as the most accurate optimization method of first order of convergence. To implement this method, it is necessary to find components of the gradient of the residual functional under study. The descent step in this method is sought from the minimum of the target functional at each computational iteration, which corresponds to the iterative regularization method. A criterion for the cessation of the iterative process is the superposition of errors that introduce ill-posedness into the formulation of the problem under study.</description><subject>Basis functions</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Functionals</subject><subject>Heat and Mass Transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Nitrogen</subject><subject>Protective coatings</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Temperature dependence</subject><subject>Tensors</subject><subject>Thermal protection</subject><subject>Thermodynamics</subject><issn>1062-0125</issn><issn>1573-871X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhRdRsFb_gE8Bn1cnyV6SRyleCvWCVPAtpJtku6VNNEmF9debdhXffBhmYL5zhjlZdo7hEgPUVwED4zgHUqTijOT0IBvhsqY5q_HbYZqhIjlgUh5nJyGsAICzgo6yMFXaxs70nW1RXGo0X2q_ket84qzaNrH77GKP5toG55EzSKLHLnrXavtLomfvok6ks2jR7z2mUXuZpBq96Ha7lr77kvv9g45Lp06zIyPXQZ_99HH2enszn9zns6e76eR6ljcEIOacQaG4LnBRVqpWFYeGMZNeVAtCyqYizBRQM0axrErZLCTGDVBiOBQGjKJ0nF0Mvu_efWx1iGLltt6mk4JizKuSFlWdKDJQjXcheG3Eu-820vcCg9iFK4ZwRbos9uGKnTUdRCHBttX-z_of1Td3Y32x</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Borshchev, N. O.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>Identifying the Thermal-Conductivity Tensor of a Nitrogen Thermal Protection by the Iterative Regularization Method</title><author>Borshchev, N. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-9804d9e41456d7d690c88f024db225c628f4078831a65acba11c032f904f0fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Basis functions</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Functionals</topic><topic>Heat and Mass Transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Nitrogen</topic><topic>Protective coatings</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Temperature dependence</topic><topic>Tensors</topic><topic>Thermal protection</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borshchev, N. O.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of engineering physics and thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borshchev, N. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying the Thermal-Conductivity Tensor of a Nitrogen Thermal Protection by the Iterative Regularization Method</atitle><jtitle>Journal of engineering physics and thermophysics</jtitle><stitle>J Eng Phys Thermophy</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>97</volume><issue>5</issue><spage>1108</spage><epage>1120</epage><pages>1108-1120</pages><issn>1062-0125</issn><eissn>1573-871X</eissn><abstract>Consideration is given to the method of parametric identification of a symmetric thermal-conductivity tensor for a cryogenic nitrogen thermal protection thermostatting an aluminum skeleton of a cylindrical nitrogen-filled vessel. This problem is solved as the problem of seeking the global minimum of the root-mean-square residual functional between the theoretical field of temperatures and the registered maximum thermal-protection temperature. To this end, it is necessary to solve the “primal” problem of heat transfer between the thermal protective coating with a selected initial approximation of components of the thermal-conductivity vector and their basis functions taking account of their dependence on temperature. The method of conjugate directions has been selected as the most accurate optimization method of first order of convergence. To implement this method, it is necessary to find components of the gradient of the residual functional under study. The descent step in this method is sought from the minimum of the target functional at each computational iteration, which corresponds to the iterative regularization method. A criterion for the cessation of the iterative process is the superposition of errors that introduce ill-posedness into the formulation of the problem under study.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10891-024-02982-3</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1062-0125
ispartof Journal of engineering physics and thermophysics, 2024-09, Vol.97 (5), p.1108-1120
issn 1062-0125
1573-871X
language eng
recordid cdi_proquest_journals_3119653467
source SpringerLink Journals - AutoHoldings
subjects Basis functions
Classical Mechanics
Complex Systems
Engineering
Engineering Thermodynamics
Functionals
Heat and Mass Transfer
Industrial Chemistry/Chemical Engineering
Iterative methods
Mathematical analysis
Nitrogen
Protective coatings
Regularization
Regularization methods
Temperature dependence
Tensors
Thermal protection
Thermodynamics
title Identifying the Thermal-Conductivity Tensor of a Nitrogen Thermal Protection by the Iterative Regularization Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20the%20Thermal-Conductivity%20Tensor%20of%20a%20Nitrogen%20Thermal%20Protection%20by%20the%20Iterative%20Regularization%20Method&rft.jtitle=Journal%20of%20engineering%20physics%20and%20thermophysics&rft.au=Borshchev,%20N.%20O.&rft.date=2024-09-01&rft.volume=97&rft.issue=5&rft.spage=1108&rft.epage=1120&rft.pages=1108-1120&rft.issn=1062-0125&rft.eissn=1573-871X&rft_id=info:doi/10.1007/s10891-024-02982-3&rft_dat=%3Cproquest_cross%3E3119653467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119653467&rft_id=info:pmid/&rfr_iscdi=true