The Regularity and Uniform Positivity of the Range of Orthogonal Projections

Given two orthogonal projections P , Q ∈ B ( H ) , let T = P Q and R ( T ) ⊥ ∩ N ( T ) = { 0 } , we characterize symmetries J such that ( J T ) ∗ = J T and J T ≥ 0 , where ( J T ) ∗ = J T if and only if P J = J Q . Furthermore, we study the regularity and uniform positivity of R ( P ) and R ( Q ) ....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2024-11, Vol.18 (8), Article 174
Hauptverfasser: Zhang, Lulu, Hai, Guojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Complex analysis and operator theory
container_volume 18
creator Zhang, Lulu
Hai, Guojun
description Given two orthogonal projections P , Q ∈ B ( H ) , let T = P Q and R ( T ) ⊥ ∩ N ( T ) = { 0 } , we characterize symmetries J such that ( J T ) ∗ = J T and J T ≥ 0 , where ( J T ) ∗ = J T if and only if P J = J Q . Furthermore, we study the regularity and uniform positivity of R ( P ) and R ( Q ) .
doi_str_mv 10.1007/s11785-024-01621-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119653043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119653043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-538dcef9b2fb2edfcd8233549d172d310240b7d88be71beb08080306dc3aca93</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwueo5NkN5s9SvELChap55DNR7ul3dQkFfrvzbqiN5nDfPDem5mH0DWBWwJQ30VCalFhoCUGwinB9ARNCOcEC8rp6W9dlefoIsYNAIe6aSZovlzb4s2uDlsVunQsVG-K975zPuyKhY9d6j6HsXdFGoCqX9mheQ1p7Ve-V9tiEfzG6tT5Pl6iM6e20V795ClaPj4sZ894_vr0MrufY00BEq6YMNq6pqWupdY4bQRlrCobQ2pqGMlfQFsbIVpbk9a2IHIw4EYzpVXDpuhmlN0H_3GwMcmNP4R8S5SMkIZXDEqWUXRE6eBjDNbJfeh2KhwlATmYJkfTZF4nv02TNJPYSIoZnH8Nf9L_sL4AqRFvWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119653043</pqid></control><display><type>article</type><title>The Regularity and Uniform Positivity of the Range of Orthogonal Projections</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Lulu ; Hai, Guojun</creator><creatorcontrib>Zhang, Lulu ; Hai, Guojun</creatorcontrib><description>Given two orthogonal projections P , Q ∈ B ( H ) , let T = P Q and R ( T ) ⊥ ∩ N ( T ) = { 0 } , we characterize symmetries J such that ( J T ) ∗ = J T and J T ≥ 0 , where ( J T ) ∗ = J T if and only if P J = J Q . Furthermore, we study the regularity and uniform positivity of R ( P ) and R ( Q ) .</description><identifier>ISSN: 1661-8254</identifier><identifier>EISSN: 1661-8262</identifier><identifier>DOI: 10.1007/s11785-024-01621-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Regularity</subject><ispartof>Complex analysis and operator theory, 2024-11, Vol.18 (8), Article 174</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-538dcef9b2fb2edfcd8233549d172d310240b7d88be71beb08080306dc3aca93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11785-024-01621-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11785-024-01621-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zhang, Lulu</creatorcontrib><creatorcontrib>Hai, Guojun</creatorcontrib><title>The Regularity and Uniform Positivity of the Range of Orthogonal Projections</title><title>Complex analysis and operator theory</title><addtitle>Complex Anal. Oper. Theory</addtitle><description>Given two orthogonal projections P , Q ∈ B ( H ) , let T = P Q and R ( T ) ⊥ ∩ N ( T ) = { 0 } , we characterize symmetries J such that ( J T ) ∗ = J T and J T ≥ 0 , where ( J T ) ∗ = J T if and only if P J = J Q . Furthermore, we study the regularity and uniform positivity of R ( P ) and R ( Q ) .</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Regularity</subject><issn>1661-8254</issn><issn>1661-8262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4BTwueo5NkN5s9SvELChap55DNR7ul3dQkFfrvzbqiN5nDfPDem5mH0DWBWwJQ30VCalFhoCUGwinB9ARNCOcEC8rp6W9dlefoIsYNAIe6aSZovlzb4s2uDlsVunQsVG-K975zPuyKhY9d6j6HsXdFGoCqX9mheQ1p7Ve-V9tiEfzG6tT5Pl6iM6e20V795ClaPj4sZ894_vr0MrufY00BEq6YMNq6pqWupdY4bQRlrCobQ2pqGMlfQFsbIVpbk9a2IHIw4EYzpVXDpuhmlN0H_3GwMcmNP4R8S5SMkIZXDEqWUXRE6eBjDNbJfeh2KhwlATmYJkfTZF4nv02TNJPYSIoZnH8Nf9L_sL4AqRFvWg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Zhang, Lulu</creator><creator>Hai, Guojun</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241101</creationdate><title>The Regularity and Uniform Positivity of the Range of Orthogonal Projections</title><author>Zhang, Lulu ; Hai, Guojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-538dcef9b2fb2edfcd8233549d172d310240b7d88be71beb08080306dc3aca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Regularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lulu</creatorcontrib><creatorcontrib>Hai, Guojun</creatorcontrib><collection>CrossRef</collection><jtitle>Complex analysis and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lulu</au><au>Hai, Guojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Regularity and Uniform Positivity of the Range of Orthogonal Projections</atitle><jtitle>Complex analysis and operator theory</jtitle><stitle>Complex Anal. Oper. Theory</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>18</volume><issue>8</issue><artnum>174</artnum><issn>1661-8254</issn><eissn>1661-8262</eissn><abstract>Given two orthogonal projections P , Q ∈ B ( H ) , let T = P Q and R ( T ) ⊥ ∩ N ( T ) = { 0 } , we characterize symmetries J such that ( J T ) ∗ = J T and J T ≥ 0 , where ( J T ) ∗ = J T if and only if P J = J Q . Furthermore, we study the regularity and uniform positivity of R ( P ) and R ( Q ) .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11785-024-01621-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 1661-8254
ispartof Complex analysis and operator theory, 2024-11, Vol.18 (8), Article 174
issn 1661-8254
1661-8262
language eng
recordid cdi_proquest_journals_3119653043
source Springer Nature - Complete Springer Journals
subjects Analysis
Mathematics
Mathematics and Statistics
Operator Theory
Regularity
title The Regularity and Uniform Positivity of the Range of Orthogonal Projections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Regularity%20and%20Uniform%20Positivity%20of%20the%20Range%20of%20Orthogonal%20Projections&rft.jtitle=Complex%20analysis%20and%20operator%20theory&rft.au=Zhang,%20Lulu&rft.date=2024-11-01&rft.volume=18&rft.issue=8&rft.artnum=174&rft.issn=1661-8254&rft.eissn=1661-8262&rft_id=info:doi/10.1007/s11785-024-01621-2&rft_dat=%3Cproquest_cross%3E3119653043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119653043&rft_id=info:pmid/&rfr_iscdi=true