Optofluidic time‐stretch imaging flow cytometry with a real‐time storage rate beyond 5.9GB/s
Optofluidic time‐stretch imaging flow cytometry (OTS‐IFC) provides a suitable solution for high‐precision cell analysis and high‐sensitivity detection of rare cells due to its high‐throughput and continuous image acquisition. However, transferring and storing continuous big data streams remains a ch...
Gespeichert in:
Veröffentlicht in: | Cytometry. Part A 2024-09, Vol.105 (9), p.713-721 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 721 |
---|---|
container_issue | 9 |
container_start_page | 713 |
container_title | Cytometry. Part A |
container_volume | 105 |
creator | Hou, Dan Zhou, Jiehua Xiao, Ruidong Yang, Kaining Ding, Yan Wang, Du Wu, Guoqiang Cheng, Lei |
description | Optofluidic time‐stretch imaging flow cytometry (OTS‐IFC) provides a suitable solution for high‐precision cell analysis and high‐sensitivity detection of rare cells due to its high‐throughput and continuous image acquisition. However, transferring and storing continuous big data streams remains a challenge. In this study, we designed a high‐speed streaming storage strategy to store OTS‐IFC data in real‐time, overcoming the imbalance between the fast generation speed in the data acquisition and processing subsystem and the comparatively slower storage speed in the transmission and storage subsystem. This strategy, utilizing an asynchronous buffer structure built on the producer‐consumer model, optimizes memory usage for enhanced data throughput and stability. We evaluated the storage performance of the high‐speed streaming storage strategy in ultra‐large‐scale blood cell imaging on a common commercial device. The experimental results show that it can provide a continuous data throughput of up to 5891 MB/s. |
doi_str_mv | 10.1002/cyto.a.24854 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3119612737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119612737</sourcerecordid><originalsourceid>FETCH-proquest_journals_31196127373</originalsourceid><addsrcrecordid>eNqNjDtuwkAURUcIJEygywKeRI09H0-IW1A-XZr0ZDDPZpDtITPPstyxhKwxK8FIKHWqe6R77mXsUfBYcC6TvCcXm1imzzodsUhoLVdppvj4j6WcslkIJ86V5kpG7OvjTK6oWnuwOZCt8ffyE8gj5UewtSltU0JRuQ5u3zWS76GzdAQDHk01yLcNBHLelAjeEMIee9ccQMfZ2yYJczYpTBVwcc8Htnx9-dy-r87efbcYaHdyrW-GaqeEyJ6EXKu1-p91BfL5TNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119612737</pqid></control><display><type>article</type><title>Optofluidic time‐stretch imaging flow cytometry with a real‐time storage rate beyond 5.9GB/s</title><source>Wiley Journals</source><creator>Hou, Dan ; Zhou, Jiehua ; Xiao, Ruidong ; Yang, Kaining ; Ding, Yan ; Wang, Du ; Wu, Guoqiang ; Cheng, Lei</creator><creatorcontrib>Hou, Dan ; Zhou, Jiehua ; Xiao, Ruidong ; Yang, Kaining ; Ding, Yan ; Wang, Du ; Wu, Guoqiang ; Cheng, Lei</creatorcontrib><description>Optofluidic time‐stretch imaging flow cytometry (OTS‐IFC) provides a suitable solution for high‐precision cell analysis and high‐sensitivity detection of rare cells due to its high‐throughput and continuous image acquisition. However, transferring and storing continuous big data streams remains a challenge. In this study, we designed a high‐speed streaming storage strategy to store OTS‐IFC data in real‐time, overcoming the imbalance between the fast generation speed in the data acquisition and processing subsystem and the comparatively slower storage speed in the transmission and storage subsystem. This strategy, utilizing an asynchronous buffer structure built on the producer‐consumer model, optimizes memory usage for enhanced data throughput and stability. We evaluated the storage performance of the high‐speed streaming storage strategy in ultra‐large‐scale blood cell imaging on a common commercial device. The experimental results show that it can provide a continuous data throughput of up to 5891 MB/s.</description><identifier>ISSN: 1552-4922</identifier><identifier>EISSN: 1552-4930</identifier><identifier>DOI: 10.1002/cyto.a.24854</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Big Data ; Blood cells ; Data acquisition ; Data transmission ; Flow cytometry ; Image acquisition ; Image processing ; Storage ; Subsystems</subject><ispartof>Cytometry. Part A, 2024-09, Vol.105 (9), p.713-721</ispartof><rights>2024 International Society for Advancement of Cytometry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hou, Dan</creatorcontrib><creatorcontrib>Zhou, Jiehua</creatorcontrib><creatorcontrib>Xiao, Ruidong</creatorcontrib><creatorcontrib>Yang, Kaining</creatorcontrib><creatorcontrib>Ding, Yan</creatorcontrib><creatorcontrib>Wang, Du</creatorcontrib><creatorcontrib>Wu, Guoqiang</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><title>Optofluidic time‐stretch imaging flow cytometry with a real‐time storage rate beyond 5.9GB/s</title><title>Cytometry. Part A</title><description>Optofluidic time‐stretch imaging flow cytometry (OTS‐IFC) provides a suitable solution for high‐precision cell analysis and high‐sensitivity detection of rare cells due to its high‐throughput and continuous image acquisition. However, transferring and storing continuous big data streams remains a challenge. In this study, we designed a high‐speed streaming storage strategy to store OTS‐IFC data in real‐time, overcoming the imbalance between the fast generation speed in the data acquisition and processing subsystem and the comparatively slower storage speed in the transmission and storage subsystem. This strategy, utilizing an asynchronous buffer structure built on the producer‐consumer model, optimizes memory usage for enhanced data throughput and stability. We evaluated the storage performance of the high‐speed streaming storage strategy in ultra‐large‐scale blood cell imaging on a common commercial device. The experimental results show that it can provide a continuous data throughput of up to 5891 MB/s.</description><subject>Big Data</subject><subject>Blood cells</subject><subject>Data acquisition</subject><subject>Data transmission</subject><subject>Flow cytometry</subject><subject>Image acquisition</subject><subject>Image processing</subject><subject>Storage</subject><subject>Subsystems</subject><issn>1552-4922</issn><issn>1552-4930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNjDtuwkAURUcIJEygywKeRI09H0-IW1A-XZr0ZDDPZpDtITPPstyxhKwxK8FIKHWqe6R77mXsUfBYcC6TvCcXm1imzzodsUhoLVdppvj4j6WcslkIJ86V5kpG7OvjTK6oWnuwOZCt8ffyE8gj5UewtSltU0JRuQ5u3zWS76GzdAQDHk01yLcNBHLelAjeEMIee9ccQMfZ2yYJczYpTBVwcc8Htnx9-dy-r87efbcYaHdyrW-GaqeEyJ6EXKu1-p91BfL5TNQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Hou, Dan</creator><creator>Zhou, Jiehua</creator><creator>Xiao, Ruidong</creator><creator>Yang, Kaining</creator><creator>Ding, Yan</creator><creator>Wang, Du</creator><creator>Wu, Guoqiang</creator><creator>Cheng, Lei</creator><general>Wiley Subscription Services, Inc</general><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20240901</creationdate><title>Optofluidic time‐stretch imaging flow cytometry with a real‐time storage rate beyond 5.9GB/s</title><author>Hou, Dan ; Zhou, Jiehua ; Xiao, Ruidong ; Yang, Kaining ; Ding, Yan ; Wang, Du ; Wu, Guoqiang ; Cheng, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31196127373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Big Data</topic><topic>Blood cells</topic><topic>Data acquisition</topic><topic>Data transmission</topic><topic>Flow cytometry</topic><topic>Image acquisition</topic><topic>Image processing</topic><topic>Storage</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Dan</creatorcontrib><creatorcontrib>Zhou, Jiehua</creatorcontrib><creatorcontrib>Xiao, Ruidong</creatorcontrib><creatorcontrib>Yang, Kaining</creatorcontrib><creatorcontrib>Ding, Yan</creatorcontrib><creatorcontrib>Wang, Du</creatorcontrib><creatorcontrib>Wu, Guoqiang</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Cytometry. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Dan</au><au>Zhou, Jiehua</au><au>Xiao, Ruidong</au><au>Yang, Kaining</au><au>Ding, Yan</au><au>Wang, Du</au><au>Wu, Guoqiang</au><au>Cheng, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optofluidic time‐stretch imaging flow cytometry with a real‐time storage rate beyond 5.9GB/s</atitle><jtitle>Cytometry. Part A</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>105</volume><issue>9</issue><spage>713</spage><epage>721</epage><pages>713-721</pages><issn>1552-4922</issn><eissn>1552-4930</eissn><abstract>Optofluidic time‐stretch imaging flow cytometry (OTS‐IFC) provides a suitable solution for high‐precision cell analysis and high‐sensitivity detection of rare cells due to its high‐throughput and continuous image acquisition. However, transferring and storing continuous big data streams remains a challenge. In this study, we designed a high‐speed streaming storage strategy to store OTS‐IFC data in real‐time, overcoming the imbalance between the fast generation speed in the data acquisition and processing subsystem and the comparatively slower storage speed in the transmission and storage subsystem. This strategy, utilizing an asynchronous buffer structure built on the producer‐consumer model, optimizes memory usage for enhanced data throughput and stability. We evaluated the storage performance of the high‐speed streaming storage strategy in ultra‐large‐scale blood cell imaging on a common commercial device. The experimental results show that it can provide a continuous data throughput of up to 5891 MB/s.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cyto.a.24854</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4922 |
ispartof | Cytometry. Part A, 2024-09, Vol.105 (9), p.713-721 |
issn | 1552-4922 1552-4930 |
language | eng |
recordid | cdi_proquest_journals_3119612737 |
source | Wiley Journals |
subjects | Big Data Blood cells Data acquisition Data transmission Flow cytometry Image acquisition Image processing Storage Subsystems |
title | Optofluidic time‐stretch imaging flow cytometry with a real‐time storage rate beyond 5.9GB/s |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optofluidic%20time%E2%80%90stretch%20imaging%20flow%20cytometry%20with%20a%20real%E2%80%90time%20storage%20rate%20beyond%205.9GB/s&rft.jtitle=Cytometry.%20Part%20A&rft.au=Hou,%20Dan&rft.date=2024-09-01&rft.volume=105&rft.issue=9&rft.spage=713&rft.epage=721&rft.pages=713-721&rft.issn=1552-4922&rft.eissn=1552-4930&rft_id=info:doi/10.1002/cyto.a.24854&rft_dat=%3Cproquest%3E3119612737%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119612737&rft_id=info:pmid/&rfr_iscdi=true |