Optofluidic time‐stretch imaging flow cytometry with a real‐time storage rate beyond 5.9GB/s

Optofluidic time‐stretch imaging flow cytometry (OTS‐IFC) provides a suitable solution for high‐precision cell analysis and high‐sensitivity detection of rare cells due to its high‐throughput and continuous image acquisition. However, transferring and storing continuous big data streams remains a ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytometry. Part A 2024-09, Vol.105 (9), p.713-721
Hauptverfasser: Hou, Dan, Zhou, Jiehua, Xiao, Ruidong, Yang, Kaining, Ding, Yan, Wang, Du, Wu, Guoqiang, Cheng, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 721
container_issue 9
container_start_page 713
container_title Cytometry. Part A
container_volume 105
creator Hou, Dan
Zhou, Jiehua
Xiao, Ruidong
Yang, Kaining
Ding, Yan
Wang, Du
Wu, Guoqiang
Cheng, Lei
description Optofluidic time‐stretch imaging flow cytometry (OTS‐IFC) provides a suitable solution for high‐precision cell analysis and high‐sensitivity detection of rare cells due to its high‐throughput and continuous image acquisition. However, transferring and storing continuous big data streams remains a challenge. In this study, we designed a high‐speed streaming storage strategy to store OTS‐IFC data in real‐time, overcoming the imbalance between the fast generation speed in the data acquisition and processing subsystem and the comparatively slower storage speed in the transmission and storage subsystem. This strategy, utilizing an asynchronous buffer structure built on the producer‐consumer model, optimizes memory usage for enhanced data throughput and stability. We evaluated the storage performance of the high‐speed streaming storage strategy in ultra‐large‐scale blood cell imaging on a common commercial device. The experimental results show that it can provide a continuous data throughput of up to 5891 MB/s.
doi_str_mv 10.1002/cyto.a.24854
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3119612737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119612737</sourcerecordid><originalsourceid>FETCH-proquest_journals_31196127373</originalsourceid><addsrcrecordid>eNqNjDtuwkAURUcIJEygywKeRI09H0-IW1A-XZr0ZDDPZpDtITPPstyxhKwxK8FIKHWqe6R77mXsUfBYcC6TvCcXm1imzzodsUhoLVdppvj4j6WcslkIJ86V5kpG7OvjTK6oWnuwOZCt8ffyE8gj5UewtSltU0JRuQ5u3zWS76GzdAQDHk01yLcNBHLelAjeEMIee9ccQMfZ2yYJczYpTBVwcc8Htnx9-dy-r87efbcYaHdyrW-GaqeEyJ6EXKu1-p91BfL5TNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119612737</pqid></control><display><type>article</type><title>Optofluidic time‐stretch imaging flow cytometry with a real‐time storage rate beyond 5.9GB/s</title><source>Wiley Journals</source><creator>Hou, Dan ; Zhou, Jiehua ; Xiao, Ruidong ; Yang, Kaining ; Ding, Yan ; Wang, Du ; Wu, Guoqiang ; Cheng, Lei</creator><creatorcontrib>Hou, Dan ; Zhou, Jiehua ; Xiao, Ruidong ; Yang, Kaining ; Ding, Yan ; Wang, Du ; Wu, Guoqiang ; Cheng, Lei</creatorcontrib><description>Optofluidic time‐stretch imaging flow cytometry (OTS‐IFC) provides a suitable solution for high‐precision cell analysis and high‐sensitivity detection of rare cells due to its high‐throughput and continuous image acquisition. However, transferring and storing continuous big data streams remains a challenge. In this study, we designed a high‐speed streaming storage strategy to store OTS‐IFC data in real‐time, overcoming the imbalance between the fast generation speed in the data acquisition and processing subsystem and the comparatively slower storage speed in the transmission and storage subsystem. This strategy, utilizing an asynchronous buffer structure built on the producer‐consumer model, optimizes memory usage for enhanced data throughput and stability. We evaluated the storage performance of the high‐speed streaming storage strategy in ultra‐large‐scale blood cell imaging on a common commercial device. The experimental results show that it can provide a continuous data throughput of up to 5891 MB/s.</description><identifier>ISSN: 1552-4922</identifier><identifier>EISSN: 1552-4930</identifier><identifier>DOI: 10.1002/cyto.a.24854</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Big Data ; Blood cells ; Data acquisition ; Data transmission ; Flow cytometry ; Image acquisition ; Image processing ; Storage ; Subsystems</subject><ispartof>Cytometry. Part A, 2024-09, Vol.105 (9), p.713-721</ispartof><rights>2024 International Society for Advancement of Cytometry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hou, Dan</creatorcontrib><creatorcontrib>Zhou, Jiehua</creatorcontrib><creatorcontrib>Xiao, Ruidong</creatorcontrib><creatorcontrib>Yang, Kaining</creatorcontrib><creatorcontrib>Ding, Yan</creatorcontrib><creatorcontrib>Wang, Du</creatorcontrib><creatorcontrib>Wu, Guoqiang</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><title>Optofluidic time‐stretch imaging flow cytometry with a real‐time storage rate beyond 5.9GB/s</title><title>Cytometry. Part A</title><description>Optofluidic time‐stretch imaging flow cytometry (OTS‐IFC) provides a suitable solution for high‐precision cell analysis and high‐sensitivity detection of rare cells due to its high‐throughput and continuous image acquisition. However, transferring and storing continuous big data streams remains a challenge. In this study, we designed a high‐speed streaming storage strategy to store OTS‐IFC data in real‐time, overcoming the imbalance between the fast generation speed in the data acquisition and processing subsystem and the comparatively slower storage speed in the transmission and storage subsystem. This strategy, utilizing an asynchronous buffer structure built on the producer‐consumer model, optimizes memory usage for enhanced data throughput and stability. We evaluated the storage performance of the high‐speed streaming storage strategy in ultra‐large‐scale blood cell imaging on a common commercial device. The experimental results show that it can provide a continuous data throughput of up to 5891 MB/s.</description><subject>Big Data</subject><subject>Blood cells</subject><subject>Data acquisition</subject><subject>Data transmission</subject><subject>Flow cytometry</subject><subject>Image acquisition</subject><subject>Image processing</subject><subject>Storage</subject><subject>Subsystems</subject><issn>1552-4922</issn><issn>1552-4930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNjDtuwkAURUcIJEygywKeRI09H0-IW1A-XZr0ZDDPZpDtITPPstyxhKwxK8FIKHWqe6R77mXsUfBYcC6TvCcXm1imzzodsUhoLVdppvj4j6WcslkIJ86V5kpG7OvjTK6oWnuwOZCt8ffyE8gj5UewtSltU0JRuQ5u3zWS76GzdAQDHk01yLcNBHLelAjeEMIee9ccQMfZ2yYJczYpTBVwcc8Htnx9-dy-r87efbcYaHdyrW-GaqeEyJ6EXKu1-p91BfL5TNQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Hou, Dan</creator><creator>Zhou, Jiehua</creator><creator>Xiao, Ruidong</creator><creator>Yang, Kaining</creator><creator>Ding, Yan</creator><creator>Wang, Du</creator><creator>Wu, Guoqiang</creator><creator>Cheng, Lei</creator><general>Wiley Subscription Services, Inc</general><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20240901</creationdate><title>Optofluidic time‐stretch imaging flow cytometry with a real‐time storage rate beyond 5.9GB/s</title><author>Hou, Dan ; Zhou, Jiehua ; Xiao, Ruidong ; Yang, Kaining ; Ding, Yan ; Wang, Du ; Wu, Guoqiang ; Cheng, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31196127373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Big Data</topic><topic>Blood cells</topic><topic>Data acquisition</topic><topic>Data transmission</topic><topic>Flow cytometry</topic><topic>Image acquisition</topic><topic>Image processing</topic><topic>Storage</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Dan</creatorcontrib><creatorcontrib>Zhou, Jiehua</creatorcontrib><creatorcontrib>Xiao, Ruidong</creatorcontrib><creatorcontrib>Yang, Kaining</creatorcontrib><creatorcontrib>Ding, Yan</creatorcontrib><creatorcontrib>Wang, Du</creatorcontrib><creatorcontrib>Wu, Guoqiang</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Cytometry. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Dan</au><au>Zhou, Jiehua</au><au>Xiao, Ruidong</au><au>Yang, Kaining</au><au>Ding, Yan</au><au>Wang, Du</au><au>Wu, Guoqiang</au><au>Cheng, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optofluidic time‐stretch imaging flow cytometry with a real‐time storage rate beyond 5.9GB/s</atitle><jtitle>Cytometry. Part A</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>105</volume><issue>9</issue><spage>713</spage><epage>721</epage><pages>713-721</pages><issn>1552-4922</issn><eissn>1552-4930</eissn><abstract>Optofluidic time‐stretch imaging flow cytometry (OTS‐IFC) provides a suitable solution for high‐precision cell analysis and high‐sensitivity detection of rare cells due to its high‐throughput and continuous image acquisition. However, transferring and storing continuous big data streams remains a challenge. In this study, we designed a high‐speed streaming storage strategy to store OTS‐IFC data in real‐time, overcoming the imbalance between the fast generation speed in the data acquisition and processing subsystem and the comparatively slower storage speed in the transmission and storage subsystem. This strategy, utilizing an asynchronous buffer structure built on the producer‐consumer model, optimizes memory usage for enhanced data throughput and stability. We evaluated the storage performance of the high‐speed streaming storage strategy in ultra‐large‐scale blood cell imaging on a common commercial device. The experimental results show that it can provide a continuous data throughput of up to 5891 MB/s.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cyto.a.24854</doi></addata></record>
fulltext fulltext
identifier ISSN: 1552-4922
ispartof Cytometry. Part A, 2024-09, Vol.105 (9), p.713-721
issn 1552-4922
1552-4930
language eng
recordid cdi_proquest_journals_3119612737
source Wiley Journals
subjects Big Data
Blood cells
Data acquisition
Data transmission
Flow cytometry
Image acquisition
Image processing
Storage
Subsystems
title Optofluidic time‐stretch imaging flow cytometry with a real‐time storage rate beyond 5.9GB/s
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optofluidic%20time%E2%80%90stretch%20imaging%20flow%20cytometry%20with%20a%20real%E2%80%90time%20storage%20rate%20beyond%205.9GB/s&rft.jtitle=Cytometry.%20Part%20A&rft.au=Hou,%20Dan&rft.date=2024-09-01&rft.volume=105&rft.issue=9&rft.spage=713&rft.epage=721&rft.pages=713-721&rft.issn=1552-4922&rft.eissn=1552-4930&rft_id=info:doi/10.1002/cyto.a.24854&rft_dat=%3Cproquest%3E3119612737%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119612737&rft_id=info:pmid/&rfr_iscdi=true