A TransUNet model with an adaptive fuzzy focal loss for medical image segmentation

Segmentation of medical images is a critical step in assisting doctors in making accurate diagnoses and planning appropriate treatments. Deep learning architectures often serve as the basis for computer models used for this task. However, a common challenge faced by segmentation models is class imba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2024-10, Vol.28 (20), p.12359-12375
Hauptverfasser: Talamantes-Roman, Adrian, Ramirez-Alonso, Graciela, Gaxiola, Fernando, Prieto-Ordaz, Olanda, Lopez-Flores, David R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12375
container_issue 20
container_start_page 12359
container_title Soft computing (Berlin, Germany)
container_volume 28
creator Talamantes-Roman, Adrian
Ramirez-Alonso, Graciela
Gaxiola, Fernando
Prieto-Ordaz, Olanda
Lopez-Flores, David R.
description Segmentation of medical images is a critical step in assisting doctors in making accurate diagnoses and planning appropriate treatments. Deep learning architectures often serve as the basis for computer models used for this task. However, a common challenge faced by segmentation models is class imbalance, which leads to a bias towards classes with a larger number of pixels, resulting in reduced accuracy for the minority-class regions. To address this problem, the α -balanced variant of the focal loss function introduces a α modulation factor that reduces the weight assigned to majority classes and gives greater weight to minority classes. This study proposes the use of a fuzzy inference system to automatically adjust the α factor, rather than maintaining a fixed value as commonly implemented. The adaptive fuzzy focal loss (AFFL) achieves an appropriate adjustment in α by employing fifteen fuzzy rules. To evaluate the effectiveness of AFFL, we implement an encoder-decoder segmentation model based on the UNet and Transformer architectures (AFFL-TransUNet) using the CHAOS dataset. We compare the performance of seven segmentation models implemented using the same data partition and hardware equipment. A statistical analysis, considering the DICE coefficient metric, demonstrates that AFFL-TransUNet outperforms four baseline models and performs comparably to the remaining models. Remarkably, AFFL-TransUNet achieves this high performance while significantly reducing training processing time by 66.31–72.39%. This reduction is attributed to the fuzzy system that effectively adapts the α value of the loss function, stabilizing the model within just a few epochs.
doi_str_mv 10.1007/s00500-024-09953-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119343344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119343344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c115z-c483d78f38a83807fbac989d3d28eb4ae5930c0d1b408bac56ca1981463509133</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwHP0clOtkmOpagVioK055DuZuuW_ajJVun-etOu4M3TPGbem3nzCLnlcM8B5EMASAEYJIKB1imy_oyMuEBkUkh9fsIJkxOBl-QqhC1AwmWKI_I-pUtvm7B6dR2t29xV9LvsPqhtqM3triu_HC32fX-gRZvZilZtCBF6Wru8PDbK2m4cDW5Tu6azXdk21-SisFVwN791TFZPj8vZnC3enl9m0wXLOE97lgmFuVQFKqtQgSzWNtNK55gnyq2FdalGyCDnawEqztJJZrlWXEwwBc0Rx-Ru2Lvz7efehc5s271v4kmDnGuM3wsRWcnAyny07l1hdj569gfDwRyzM0N2JmZnTtmZPopwEIVIbjbO_63-R_UD5c9xvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119343344</pqid></control><display><type>article</type><title>A TransUNet model with an adaptive fuzzy focal loss for medical image segmentation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Talamantes-Roman, Adrian ; Ramirez-Alonso, Graciela ; Gaxiola, Fernando ; Prieto-Ordaz, Olanda ; Lopez-Flores, David R.</creator><creatorcontrib>Talamantes-Roman, Adrian ; Ramirez-Alonso, Graciela ; Gaxiola, Fernando ; Prieto-Ordaz, Olanda ; Lopez-Flores, David R.</creatorcontrib><description>Segmentation of medical images is a critical step in assisting doctors in making accurate diagnoses and planning appropriate treatments. Deep learning architectures often serve as the basis for computer models used for this task. However, a common challenge faced by segmentation models is class imbalance, which leads to a bias towards classes with a larger number of pixels, resulting in reduced accuracy for the minority-class regions. To address this problem, the α -balanced variant of the focal loss function introduces a α modulation factor that reduces the weight assigned to majority classes and gives greater weight to minority classes. This study proposes the use of a fuzzy inference system to automatically adjust the α factor, rather than maintaining a fixed value as commonly implemented. The adaptive fuzzy focal loss (AFFL) achieves an appropriate adjustment in α by employing fifteen fuzzy rules. To evaluate the effectiveness of AFFL, we implement an encoder-decoder segmentation model based on the UNet and Transformer architectures (AFFL-TransUNet) using the CHAOS dataset. We compare the performance of seven segmentation models implemented using the same data partition and hardware equipment. A statistical analysis, considering the DICE coefficient metric, demonstrates that AFFL-TransUNet outperforms four baseline models and performs comparably to the remaining models. Remarkably, AFFL-TransUNet achieves this high performance while significantly reducing training processing time by 66.31–72.39%. This reduction is attributed to the fuzzy system that effectively adapts the α value of the loss function, stabilizing the model within just a few epochs.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-024-09953-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Application of Soft Computing ; Artificial Intelligence ; Computational Intelligence ; Control ; Encoders-Decoders ; Engineering ; Image segmentation ; Mathematical Logic and Foundations ; Mechatronics ; Medical imaging ; Neural networks ; Robotics ; Semantics ; Statistical analysis</subject><ispartof>Soft computing (Berlin, Germany), 2024-10, Vol.28 (20), p.12359-12375</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c115z-c483d78f38a83807fbac989d3d28eb4ae5930c0d1b408bac56ca1981463509133</cites><orcidid>0000-0002-9781-3010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-024-09953-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00500-024-09953-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Talamantes-Roman, Adrian</creatorcontrib><creatorcontrib>Ramirez-Alonso, Graciela</creatorcontrib><creatorcontrib>Gaxiola, Fernando</creatorcontrib><creatorcontrib>Prieto-Ordaz, Olanda</creatorcontrib><creatorcontrib>Lopez-Flores, David R.</creatorcontrib><title>A TransUNet model with an adaptive fuzzy focal loss for medical image segmentation</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Segmentation of medical images is a critical step in assisting doctors in making accurate diagnoses and planning appropriate treatments. Deep learning architectures often serve as the basis for computer models used for this task. However, a common challenge faced by segmentation models is class imbalance, which leads to a bias towards classes with a larger number of pixels, resulting in reduced accuracy for the minority-class regions. To address this problem, the α -balanced variant of the focal loss function introduces a α modulation factor that reduces the weight assigned to majority classes and gives greater weight to minority classes. This study proposes the use of a fuzzy inference system to automatically adjust the α factor, rather than maintaining a fixed value as commonly implemented. The adaptive fuzzy focal loss (AFFL) achieves an appropriate adjustment in α by employing fifteen fuzzy rules. To evaluate the effectiveness of AFFL, we implement an encoder-decoder segmentation model based on the UNet and Transformer architectures (AFFL-TransUNet) using the CHAOS dataset. We compare the performance of seven segmentation models implemented using the same data partition and hardware equipment. A statistical analysis, considering the DICE coefficient metric, demonstrates that AFFL-TransUNet outperforms four baseline models and performs comparably to the remaining models. Remarkably, AFFL-TransUNet achieves this high performance while significantly reducing training processing time by 66.31–72.39%. This reduction is attributed to the fuzzy system that effectively adapts the α value of the loss function, stabilizing the model within just a few epochs.</description><subject>Application of Soft Computing</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Encoders-Decoders</subject><subject>Engineering</subject><subject>Image segmentation</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Robotics</subject><subject>Semantics</subject><subject>Statistical analysis</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4BTwHP0clOtkmOpagVioK055DuZuuW_ajJVun-etOu4M3TPGbem3nzCLnlcM8B5EMASAEYJIKB1imy_oyMuEBkUkh9fsIJkxOBl-QqhC1AwmWKI_I-pUtvm7B6dR2t29xV9LvsPqhtqM3triu_HC32fX-gRZvZilZtCBF6Wru8PDbK2m4cDW5Tu6azXdk21-SisFVwN791TFZPj8vZnC3enl9m0wXLOE97lgmFuVQFKqtQgSzWNtNK55gnyq2FdalGyCDnawEqztJJZrlWXEwwBc0Rx-Ru2Lvz7efehc5s271v4kmDnGuM3wsRWcnAyny07l1hdj569gfDwRyzM0N2JmZnTtmZPopwEIVIbjbO_63-R_UD5c9xvg</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Talamantes-Roman, Adrian</creator><creator>Ramirez-Alonso, Graciela</creator><creator>Gaxiola, Fernando</creator><creator>Prieto-Ordaz, Olanda</creator><creator>Lopez-Flores, David R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-9781-3010</orcidid></search><sort><creationdate>20241001</creationdate><title>A TransUNet model with an adaptive fuzzy focal loss for medical image segmentation</title><author>Talamantes-Roman, Adrian ; Ramirez-Alonso, Graciela ; Gaxiola, Fernando ; Prieto-Ordaz, Olanda ; Lopez-Flores, David R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c115z-c483d78f38a83807fbac989d3d28eb4ae5930c0d1b408bac56ca1981463509133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Application of Soft Computing</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Encoders-Decoders</topic><topic>Engineering</topic><topic>Image segmentation</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Robotics</topic><topic>Semantics</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talamantes-Roman, Adrian</creatorcontrib><creatorcontrib>Ramirez-Alonso, Graciela</creatorcontrib><creatorcontrib>Gaxiola, Fernando</creatorcontrib><creatorcontrib>Prieto-Ordaz, Olanda</creatorcontrib><creatorcontrib>Lopez-Flores, David R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talamantes-Roman, Adrian</au><au>Ramirez-Alonso, Graciela</au><au>Gaxiola, Fernando</au><au>Prieto-Ordaz, Olanda</au><au>Lopez-Flores, David R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A TransUNet model with an adaptive fuzzy focal loss for medical image segmentation</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>28</volume><issue>20</issue><spage>12359</spage><epage>12375</epage><pages>12359-12375</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Segmentation of medical images is a critical step in assisting doctors in making accurate diagnoses and planning appropriate treatments. Deep learning architectures often serve as the basis for computer models used for this task. However, a common challenge faced by segmentation models is class imbalance, which leads to a bias towards classes with a larger number of pixels, resulting in reduced accuracy for the minority-class regions. To address this problem, the α -balanced variant of the focal loss function introduces a α modulation factor that reduces the weight assigned to majority classes and gives greater weight to minority classes. This study proposes the use of a fuzzy inference system to automatically adjust the α factor, rather than maintaining a fixed value as commonly implemented. The adaptive fuzzy focal loss (AFFL) achieves an appropriate adjustment in α by employing fifteen fuzzy rules. To evaluate the effectiveness of AFFL, we implement an encoder-decoder segmentation model based on the UNet and Transformer architectures (AFFL-TransUNet) using the CHAOS dataset. We compare the performance of seven segmentation models implemented using the same data partition and hardware equipment. A statistical analysis, considering the DICE coefficient metric, demonstrates that AFFL-TransUNet outperforms four baseline models and performs comparably to the remaining models. Remarkably, AFFL-TransUNet achieves this high performance while significantly reducing training processing time by 66.31–72.39%. This reduction is attributed to the fuzzy system that effectively adapts the α value of the loss function, stabilizing the model within just a few epochs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-024-09953-z</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9781-3010</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2024-10, Vol.28 (20), p.12359-12375
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_3119343344
source SpringerLink Journals - AutoHoldings
subjects Application of Soft Computing
Artificial Intelligence
Computational Intelligence
Control
Encoders-Decoders
Engineering
Image segmentation
Mathematical Logic and Foundations
Mechatronics
Medical imaging
Neural networks
Robotics
Semantics
Statistical analysis
title A TransUNet model with an adaptive fuzzy focal loss for medical image segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20TransUNet%20model%20with%20an%20adaptive%20fuzzy%20focal%20loss%20for%20medical%20image%20segmentation&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Talamantes-Roman,%20Adrian&rft.date=2024-10-01&rft.volume=28&rft.issue=20&rft.spage=12359&rft.epage=12375&rft.pages=12359-12375&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-024-09953-z&rft_dat=%3Cproquest_cross%3E3119343344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119343344&rft_id=info:pmid/&rfr_iscdi=true