Molecular Quantum Control Algorithm Design by Reinforcement Learning
Precision measurements of polyatomic molecules offer an unparalleled paradigm to probe physics beyond the Standard Model. The rich internal structure within these molecules makes them exquisite sensors for detecting fundamental symmetry violations, local position invariance, and dark matter. While t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pipi, Anastasia Tao, Xuecheng Narang, Prineha Leibrandt, David R |
description | Precision measurements of polyatomic molecules offer an unparalleled paradigm to probe physics beyond the Standard Model. The rich internal structure within these molecules makes them exquisite sensors for detecting fundamental symmetry violations, local position invariance, and dark matter. While trapping and control of diatomic and a few very simple polyatomic molecules have been experimentally demonstrated, leveraging the complex rovibrational structure of more general polyatomics demands the development of robust and efficient quantum control schemes. In this study, we present a general, reinforcement-learning-designed, quantum logic approach to prepare molecular ions in a single, pure quantum state. The reinforcement learning agent optimizes the pulse sequence, each followed by a projective measurement, and probabilistically manipulates the collapse of the quantum system to a single state. The performance of the control algorithm is numerically demonstrated in the case of a CaH\(^+\) ion, with up to 96 thermally populated eigenstates and under the disturbance of environmental thermal radiation. We expect that the method developed, with physics-informed learning, will be directly implemented for quantum control of polyatomic molecular ions with densely populated structures, enabling new experimental tests of fundamental theories. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3119329477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119329477</sourcerecordid><originalsourceid>FETCH-proquest_journals_31193294773</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_EMTZxJoQWQ0oHHQQeNOKnlgSXnV13bw73XwA5zucO6MRULKLNnmQixY7NyYpqnYlKIoZMSaszXQBaOIX4JCHyZeW_RkDd-ZwZL2j4k34PSA_P7mV9DYW-pgAvT8BIpQ47Bi814ZB_GvS7Y-7G_1MXmSfQVwvh1tIPxSK7OskqLKy1L-d30AWyo60g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119329477</pqid></control><display><type>article</type><title>Molecular Quantum Control Algorithm Design by Reinforcement Learning</title><source>Freely Accessible Journals</source><creator>Pipi, Anastasia ; Tao, Xuecheng ; Narang, Prineha ; Leibrandt, David R</creator><creatorcontrib>Pipi, Anastasia ; Tao, Xuecheng ; Narang, Prineha ; Leibrandt, David R</creatorcontrib><description>Precision measurements of polyatomic molecules offer an unparalleled paradigm to probe physics beyond the Standard Model. The rich internal structure within these molecules makes them exquisite sensors for detecting fundamental symmetry violations, local position invariance, and dark matter. While trapping and control of diatomic and a few very simple polyatomic molecules have been experimentally demonstrated, leveraging the complex rovibrational structure of more general polyatomics demands the development of robust and efficient quantum control schemes. In this study, we present a general, reinforcement-learning-designed, quantum logic approach to prepare molecular ions in a single, pure quantum state. The reinforcement learning agent optimizes the pulse sequence, each followed by a projective measurement, and probabilistically manipulates the collapse of the quantum system to a single state. The performance of the control algorithm is numerically demonstrated in the case of a CaH\(^+\) ion, with up to 96 thermally populated eigenstates and under the disturbance of environmental thermal radiation. We expect that the method developed, with physics-informed learning, will be directly implemented for quantum control of polyatomic molecular ions with densely populated structures, enabling new experimental tests of fundamental theories.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Control algorithms ; Control theory ; Dark matter ; Design standards ; Eigenvectors ; Machine learning ; Molecular ions ; Molecular structure ; Polyatomic molecules ; Position measurement ; Position sensing ; Quantum theory ; Robust control ; Thermal radiation</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,786</link.rule.ids></links><search><creatorcontrib>Pipi, Anastasia</creatorcontrib><creatorcontrib>Tao, Xuecheng</creatorcontrib><creatorcontrib>Narang, Prineha</creatorcontrib><creatorcontrib>Leibrandt, David R</creatorcontrib><title>Molecular Quantum Control Algorithm Design by Reinforcement Learning</title><title>arXiv.org</title><description>Precision measurements of polyatomic molecules offer an unparalleled paradigm to probe physics beyond the Standard Model. The rich internal structure within these molecules makes them exquisite sensors for detecting fundamental symmetry violations, local position invariance, and dark matter. While trapping and control of diatomic and a few very simple polyatomic molecules have been experimentally demonstrated, leveraging the complex rovibrational structure of more general polyatomics demands the development of robust and efficient quantum control schemes. In this study, we present a general, reinforcement-learning-designed, quantum logic approach to prepare molecular ions in a single, pure quantum state. The reinforcement learning agent optimizes the pulse sequence, each followed by a projective measurement, and probabilistically manipulates the collapse of the quantum system to a single state. The performance of the control algorithm is numerically demonstrated in the case of a CaH\(^+\) ion, with up to 96 thermally populated eigenstates and under the disturbance of environmental thermal radiation. We expect that the method developed, with physics-informed learning, will be directly implemented for quantum control of polyatomic molecular ions with densely populated structures, enabling new experimental tests of fundamental theories.</description><subject>Algorithms</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Dark matter</subject><subject>Design standards</subject><subject>Eigenvectors</subject><subject>Machine learning</subject><subject>Molecular ions</subject><subject>Molecular structure</subject><subject>Polyatomic molecules</subject><subject>Position measurement</subject><subject>Position sensing</subject><subject>Quantum theory</subject><subject>Robust control</subject><subject>Thermal radiation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_EMTZxJoQWQ0oHHQQeNOKnlgSXnV13bw73XwA5zucO6MRULKLNnmQixY7NyYpqnYlKIoZMSaszXQBaOIX4JCHyZeW_RkDd-ZwZL2j4k34PSA_P7mV9DYW-pgAvT8BIpQ47Bi814ZB_GvS7Y-7G_1MXmSfQVwvh1tIPxSK7OskqLKy1L-d30AWyo60g</recordid><startdate>20241021</startdate><enddate>20241021</enddate><creator>Pipi, Anastasia</creator><creator>Tao, Xuecheng</creator><creator>Narang, Prineha</creator><creator>Leibrandt, David R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241021</creationdate><title>Molecular Quantum Control Algorithm Design by Reinforcement Learning</title><author>Pipi, Anastasia ; Tao, Xuecheng ; Narang, Prineha ; Leibrandt, David R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31193294773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Dark matter</topic><topic>Design standards</topic><topic>Eigenvectors</topic><topic>Machine learning</topic><topic>Molecular ions</topic><topic>Molecular structure</topic><topic>Polyatomic molecules</topic><topic>Position measurement</topic><topic>Position sensing</topic><topic>Quantum theory</topic><topic>Robust control</topic><topic>Thermal radiation</topic><toplevel>online_resources</toplevel><creatorcontrib>Pipi, Anastasia</creatorcontrib><creatorcontrib>Tao, Xuecheng</creatorcontrib><creatorcontrib>Narang, Prineha</creatorcontrib><creatorcontrib>Leibrandt, David R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pipi, Anastasia</au><au>Tao, Xuecheng</au><au>Narang, Prineha</au><au>Leibrandt, David R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Molecular Quantum Control Algorithm Design by Reinforcement Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-10-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Precision measurements of polyatomic molecules offer an unparalleled paradigm to probe physics beyond the Standard Model. The rich internal structure within these molecules makes them exquisite sensors for detecting fundamental symmetry violations, local position invariance, and dark matter. While trapping and control of diatomic and a few very simple polyatomic molecules have been experimentally demonstrated, leveraging the complex rovibrational structure of more general polyatomics demands the development of robust and efficient quantum control schemes. In this study, we present a general, reinforcement-learning-designed, quantum logic approach to prepare molecular ions in a single, pure quantum state. The reinforcement learning agent optimizes the pulse sequence, each followed by a projective measurement, and probabilistically manipulates the collapse of the quantum system to a single state. The performance of the control algorithm is numerically demonstrated in the case of a CaH\(^+\) ion, with up to 96 thermally populated eigenstates and under the disturbance of environmental thermal radiation. We expect that the method developed, with physics-informed learning, will be directly implemented for quantum control of polyatomic molecular ions with densely populated structures, enabling new experimental tests of fundamental theories.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3119329477 |
source | Freely Accessible Journals |
subjects | Algorithms Control algorithms Control theory Dark matter Design standards Eigenvectors Machine learning Molecular ions Molecular structure Polyatomic molecules Position measurement Position sensing Quantum theory Robust control Thermal radiation |
title | Molecular Quantum Control Algorithm Design by Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Molecular%20Quantum%20Control%20Algorithm%20Design%20by%20Reinforcement%20Learning&rft.jtitle=arXiv.org&rft.au=Pipi,%20Anastasia&rft.date=2024-10-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3119329477%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119329477&rft_id=info:pmid/&rfr_iscdi=true |