Molecular Quantum Control Algorithm Design by Reinforcement Learning

Precision measurements of polyatomic molecules offer an unparalleled paradigm to probe physics beyond the Standard Model. The rich internal structure within these molecules makes them exquisite sensors for detecting fundamental symmetry violations, local position invariance, and dark matter. While t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Pipi, Anastasia, Tao, Xuecheng, Narang, Prineha, Leibrandt, David R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pipi, Anastasia
Tao, Xuecheng
Narang, Prineha
Leibrandt, David R
description Precision measurements of polyatomic molecules offer an unparalleled paradigm to probe physics beyond the Standard Model. The rich internal structure within these molecules makes them exquisite sensors for detecting fundamental symmetry violations, local position invariance, and dark matter. While trapping and control of diatomic and a few very simple polyatomic molecules have been experimentally demonstrated, leveraging the complex rovibrational structure of more general polyatomics demands the development of robust and efficient quantum control schemes. In this study, we present a general, reinforcement-learning-designed, quantum logic approach to prepare molecular ions in a single, pure quantum state. The reinforcement learning agent optimizes the pulse sequence, each followed by a projective measurement, and probabilistically manipulates the collapse of the quantum system to a single state. The performance of the control algorithm is numerically demonstrated in the case of a CaH\(^+\) ion, with up to 96 thermally populated eigenstates and under the disturbance of environmental thermal radiation. We expect that the method developed, with physics-informed learning, will be directly implemented for quantum control of polyatomic molecular ions with densely populated structures, enabling new experimental tests of fundamental theories.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3119329477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119329477</sourcerecordid><originalsourceid>FETCH-proquest_journals_31193294773</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_EMTZxJoQWQ0oHHQQeNOKnlgSXnV13bw73XwA5zucO6MRULKLNnmQixY7NyYpqnYlKIoZMSaszXQBaOIX4JCHyZeW_RkDd-ZwZL2j4k34PSA_P7mV9DYW-pgAvT8BIpQ47Bi814ZB_GvS7Y-7G_1MXmSfQVwvh1tIPxSK7OskqLKy1L-d30AWyo60g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119329477</pqid></control><display><type>article</type><title>Molecular Quantum Control Algorithm Design by Reinforcement Learning</title><source>Freely Accessible Journals</source><creator>Pipi, Anastasia ; Tao, Xuecheng ; Narang, Prineha ; Leibrandt, David R</creator><creatorcontrib>Pipi, Anastasia ; Tao, Xuecheng ; Narang, Prineha ; Leibrandt, David R</creatorcontrib><description>Precision measurements of polyatomic molecules offer an unparalleled paradigm to probe physics beyond the Standard Model. The rich internal structure within these molecules makes them exquisite sensors for detecting fundamental symmetry violations, local position invariance, and dark matter. While trapping and control of diatomic and a few very simple polyatomic molecules have been experimentally demonstrated, leveraging the complex rovibrational structure of more general polyatomics demands the development of robust and efficient quantum control schemes. In this study, we present a general, reinforcement-learning-designed, quantum logic approach to prepare molecular ions in a single, pure quantum state. The reinforcement learning agent optimizes the pulse sequence, each followed by a projective measurement, and probabilistically manipulates the collapse of the quantum system to a single state. The performance of the control algorithm is numerically demonstrated in the case of a CaH\(^+\) ion, with up to 96 thermally populated eigenstates and under the disturbance of environmental thermal radiation. We expect that the method developed, with physics-informed learning, will be directly implemented for quantum control of polyatomic molecular ions with densely populated structures, enabling new experimental tests of fundamental theories.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Control algorithms ; Control theory ; Dark matter ; Design standards ; Eigenvectors ; Machine learning ; Molecular ions ; Molecular structure ; Polyatomic molecules ; Position measurement ; Position sensing ; Quantum theory ; Robust control ; Thermal radiation</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,786</link.rule.ids></links><search><creatorcontrib>Pipi, Anastasia</creatorcontrib><creatorcontrib>Tao, Xuecheng</creatorcontrib><creatorcontrib>Narang, Prineha</creatorcontrib><creatorcontrib>Leibrandt, David R</creatorcontrib><title>Molecular Quantum Control Algorithm Design by Reinforcement Learning</title><title>arXiv.org</title><description>Precision measurements of polyatomic molecules offer an unparalleled paradigm to probe physics beyond the Standard Model. The rich internal structure within these molecules makes them exquisite sensors for detecting fundamental symmetry violations, local position invariance, and dark matter. While trapping and control of diatomic and a few very simple polyatomic molecules have been experimentally demonstrated, leveraging the complex rovibrational structure of more general polyatomics demands the development of robust and efficient quantum control schemes. In this study, we present a general, reinforcement-learning-designed, quantum logic approach to prepare molecular ions in a single, pure quantum state. The reinforcement learning agent optimizes the pulse sequence, each followed by a projective measurement, and probabilistically manipulates the collapse of the quantum system to a single state. The performance of the control algorithm is numerically demonstrated in the case of a CaH\(^+\) ion, with up to 96 thermally populated eigenstates and under the disturbance of environmental thermal radiation. We expect that the method developed, with physics-informed learning, will be directly implemented for quantum control of polyatomic molecular ions with densely populated structures, enabling new experimental tests of fundamental theories.</description><subject>Algorithms</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Dark matter</subject><subject>Design standards</subject><subject>Eigenvectors</subject><subject>Machine learning</subject><subject>Molecular ions</subject><subject>Molecular structure</subject><subject>Polyatomic molecules</subject><subject>Position measurement</subject><subject>Position sensing</subject><subject>Quantum theory</subject><subject>Robust control</subject><subject>Thermal radiation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_EMTZxJoQWQ0oHHQQeNOKnlgSXnV13bw73XwA5zucO6MRULKLNnmQixY7NyYpqnYlKIoZMSaszXQBaOIX4JCHyZeW_RkDd-ZwZL2j4k34PSA_P7mV9DYW-pgAvT8BIpQ47Bi814ZB_GvS7Y-7G_1MXmSfQVwvh1tIPxSK7OskqLKy1L-d30AWyo60g</recordid><startdate>20241021</startdate><enddate>20241021</enddate><creator>Pipi, Anastasia</creator><creator>Tao, Xuecheng</creator><creator>Narang, Prineha</creator><creator>Leibrandt, David R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241021</creationdate><title>Molecular Quantum Control Algorithm Design by Reinforcement Learning</title><author>Pipi, Anastasia ; Tao, Xuecheng ; Narang, Prineha ; Leibrandt, David R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31193294773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Dark matter</topic><topic>Design standards</topic><topic>Eigenvectors</topic><topic>Machine learning</topic><topic>Molecular ions</topic><topic>Molecular structure</topic><topic>Polyatomic molecules</topic><topic>Position measurement</topic><topic>Position sensing</topic><topic>Quantum theory</topic><topic>Robust control</topic><topic>Thermal radiation</topic><toplevel>online_resources</toplevel><creatorcontrib>Pipi, Anastasia</creatorcontrib><creatorcontrib>Tao, Xuecheng</creatorcontrib><creatorcontrib>Narang, Prineha</creatorcontrib><creatorcontrib>Leibrandt, David R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pipi, Anastasia</au><au>Tao, Xuecheng</au><au>Narang, Prineha</au><au>Leibrandt, David R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Molecular Quantum Control Algorithm Design by Reinforcement Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-10-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Precision measurements of polyatomic molecules offer an unparalleled paradigm to probe physics beyond the Standard Model. The rich internal structure within these molecules makes them exquisite sensors for detecting fundamental symmetry violations, local position invariance, and dark matter. While trapping and control of diatomic and a few very simple polyatomic molecules have been experimentally demonstrated, leveraging the complex rovibrational structure of more general polyatomics demands the development of robust and efficient quantum control schemes. In this study, we present a general, reinforcement-learning-designed, quantum logic approach to prepare molecular ions in a single, pure quantum state. The reinforcement learning agent optimizes the pulse sequence, each followed by a projective measurement, and probabilistically manipulates the collapse of the quantum system to a single state. The performance of the control algorithm is numerically demonstrated in the case of a CaH\(^+\) ion, with up to 96 thermally populated eigenstates and under the disturbance of environmental thermal radiation. We expect that the method developed, with physics-informed learning, will be directly implemented for quantum control of polyatomic molecular ions with densely populated structures, enabling new experimental tests of fundamental theories.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3119329477
source Freely Accessible Journals
subjects Algorithms
Control algorithms
Control theory
Dark matter
Design standards
Eigenvectors
Machine learning
Molecular ions
Molecular structure
Polyatomic molecules
Position measurement
Position sensing
Quantum theory
Robust control
Thermal radiation
title Molecular Quantum Control Algorithm Design by Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Molecular%20Quantum%20Control%20Algorithm%20Design%20by%20Reinforcement%20Learning&rft.jtitle=arXiv.org&rft.au=Pipi,%20Anastasia&rft.date=2024-10-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3119329477%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119329477&rft_id=info:pmid/&rfr_iscdi=true