Exploration of physical recovery techniques and economic viability for retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries
Retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries (NCMs) pose considerable challenges for recycling due to high contamination levels and low efficiency in the recovery process. Despite these complexities, NCMs contain significant amounts of precious metals, making them a...
Gespeichert in:
Veröffentlicht in: | Journal of material cycles and waste management 2024-11, Vol.26 (6), p.3571-3583 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3583 |
---|---|
container_issue | 6 |
container_start_page | 3571 |
container_title | Journal of material cycles and waste management |
container_volume | 26 |
creator | Yang, Gaige Wu, Zhongwei Zhu, Huabing Bi, Haijun Bai, Yuxuan Wang, Lei |
description | Retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries (NCMs) pose considerable challenges for recycling due to high contamination levels and low efficiency in the recovery process. Despite these complexities, NCMs contain significant amounts of precious metals, making them a substantial untapped resource with immense recycling potential. This study optimizes heat treatment conditions for NCMs focusing on cathode materials and the current collector. The optimal parameters of 280 °C, 2 h, and 60 s were identified through systematic discharge, disassembly, crushing, and sorting processes. Precious metal recovery rates exceeded 90%. Thermogravimetric-thermal differential analysis at 400 °C revealed the complete removal of bonding agents between the electrode materials. A comprehensive cost analysis was conducted using a mathematical model for retired power batteries revenue, scrutinizing the consumption costs and benefits of pyrometallurgical, hydrometallurgical, and physical recovery processes for NCMs. The input–output efficiencies were 6.56%, 28%, and 23%, respectively. This study supports the viability of physical recycling for a future mechanical–chemical combination approach to reduce production costs and environmental impacts. The proposed method holds economic, environmental, and industrial development value and provides a guide for sustainable recycling practices in the lithium-ion battery industry. |
doi_str_mv | 10.1007/s10163-024-02061-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119296482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119296482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-ea0739064f9e8847cc920dedad70219ffdb0f1cf934e0e7d7dc7f67ad81e6d9f3</originalsourceid><addsrcrecordid>eNp9kM9KJDEQxhtR8O8LeArsOWsl3XY6x0V0d0HwoueQSSpOtCdpk4zaD-L7mnEUbx6KKorfVx_1Nc0pg98MQJxlBqxvKfCuFvSMzjvNAesZowPnYrfOXTvQTp6L_eYw5wcALqEVB83b5es0xqSLj4FER6blnL3RI0lo4jOmmRQ0y-Cf1piJDpbUdYgrb8iz1ws_-jITF1PFi09oSV0s_XpFgjePOBITF3osZKXDvQ6YkcRXb5GWecIvlG6cp_iCiSx0KZg85uNmz-kx48lnP2ruri5vL_7R65u__y_-XFPDAQpFDaKV0HdO4jB0whjJwaLVVgBn0jm7AMeMk22HgMIKa4TrhbYDw95K1x41v7Z3pxQ3Hxb1ENcpVEvVMia57LuBV4pvKZNizgmdmpJf6TQrBmoTv9rGr2r86iN-NVdRuxXlCod7TN-nf1C9AzaujfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119296482</pqid></control><display><type>article</type><title>Exploration of physical recovery techniques and economic viability for retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Gaige ; Wu, Zhongwei ; Zhu, Huabing ; Bi, Haijun ; Bai, Yuxuan ; Wang, Lei</creator><creatorcontrib>Yang, Gaige ; Wu, Zhongwei ; Zhu, Huabing ; Bi, Haijun ; Bai, Yuxuan ; Wang, Lei</creatorcontrib><description>Retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries (NCMs) pose considerable challenges for recycling due to high contamination levels and low efficiency in the recovery process. Despite these complexities, NCMs contain significant amounts of precious metals, making them a substantial untapped resource with immense recycling potential. This study optimizes heat treatment conditions for NCMs focusing on cathode materials and the current collector. The optimal parameters of 280 °C, 2 h, and 60 s were identified through systematic discharge, disassembly, crushing, and sorting processes. Precious metal recovery rates exceeded 90%. Thermogravimetric-thermal differential analysis at 400 °C revealed the complete removal of bonding agents between the electrode materials. A comprehensive cost analysis was conducted using a mathematical model for retired power batteries revenue, scrutinizing the consumption costs and benefits of pyrometallurgical, hydrometallurgical, and physical recovery processes for NCMs. The input–output efficiencies were 6.56%, 28%, and 23%, respectively. This study supports the viability of physical recycling for a future mechanical–chemical combination approach to reduce production costs and environmental impacts. The proposed method holds economic, environmental, and industrial development value and provides a guide for sustainable recycling practices in the lithium-ion battery industry.</description><identifier>ISSN: 1438-4957</identifier><identifier>EISSN: 1611-8227</identifier><identifier>DOI: 10.1007/s10163-024-02061-y</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Bonding agents ; Civil Engineering ; Cobalt ; Cobalt compounds ; Cost benefit analysis ; Economics ; Electrode materials ; Engineering ; Environmental impact ; Environmental Management ; Heat treatment ; Heat treatments ; Heavy metals ; Industrial development ; Lithium ; Lithium-ion batteries ; Manganese ; Manganese oxides ; Materials recovery ; Mathematical models ; Nickel ; Noble metals ; Original Article ; Parameter identification ; Production costs ; Recycling ; Waste Management/Waste Technology</subject><ispartof>Journal of material cycles and waste management, 2024-11, Vol.26 (6), p.3571-3583</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Japan KK, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-ea0739064f9e8847cc920dedad70219ffdb0f1cf934e0e7d7dc7f67ad81e6d9f3</cites><orcidid>0009-0006-0455-4117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10163-024-02061-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10163-024-02061-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yang, Gaige</creatorcontrib><creatorcontrib>Wu, Zhongwei</creatorcontrib><creatorcontrib>Zhu, Huabing</creatorcontrib><creatorcontrib>Bi, Haijun</creatorcontrib><creatorcontrib>Bai, Yuxuan</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><title>Exploration of physical recovery techniques and economic viability for retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries</title><title>Journal of material cycles and waste management</title><addtitle>J Mater Cycles Waste Manag</addtitle><description>Retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries (NCMs) pose considerable challenges for recycling due to high contamination levels and low efficiency in the recovery process. Despite these complexities, NCMs contain significant amounts of precious metals, making them a substantial untapped resource with immense recycling potential. This study optimizes heat treatment conditions for NCMs focusing on cathode materials and the current collector. The optimal parameters of 280 °C, 2 h, and 60 s were identified through systematic discharge, disassembly, crushing, and sorting processes. Precious metal recovery rates exceeded 90%. Thermogravimetric-thermal differential analysis at 400 °C revealed the complete removal of bonding agents between the electrode materials. A comprehensive cost analysis was conducted using a mathematical model for retired power batteries revenue, scrutinizing the consumption costs and benefits of pyrometallurgical, hydrometallurgical, and physical recovery processes for NCMs. The input–output efficiencies were 6.56%, 28%, and 23%, respectively. This study supports the viability of physical recycling for a future mechanical–chemical combination approach to reduce production costs and environmental impacts. The proposed method holds economic, environmental, and industrial development value and provides a guide for sustainable recycling practices in the lithium-ion battery industry.</description><subject>Bonding agents</subject><subject>Civil Engineering</subject><subject>Cobalt</subject><subject>Cobalt compounds</subject><subject>Cost benefit analysis</subject><subject>Economics</subject><subject>Electrode materials</subject><subject>Engineering</subject><subject>Environmental impact</subject><subject>Environmental Management</subject><subject>Heat treatment</subject><subject>Heat treatments</subject><subject>Heavy metals</subject><subject>Industrial development</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Manganese</subject><subject>Manganese oxides</subject><subject>Materials recovery</subject><subject>Mathematical models</subject><subject>Nickel</subject><subject>Noble metals</subject><subject>Original Article</subject><subject>Parameter identification</subject><subject>Production costs</subject><subject>Recycling</subject><subject>Waste Management/Waste Technology</subject><issn>1438-4957</issn><issn>1611-8227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KJDEQxhtR8O8LeArsOWsl3XY6x0V0d0HwoueQSSpOtCdpk4zaD-L7mnEUbx6KKorfVx_1Nc0pg98MQJxlBqxvKfCuFvSMzjvNAesZowPnYrfOXTvQTp6L_eYw5wcALqEVB83b5es0xqSLj4FER6blnL3RI0lo4jOmmRQ0y-Cf1piJDpbUdYgrb8iz1ws_-jITF1PFi09oSV0s_XpFgjePOBITF3osZKXDvQ6YkcRXb5GWecIvlG6cp_iCiSx0KZg85uNmz-kx48lnP2ruri5vL_7R65u__y_-XFPDAQpFDaKV0HdO4jB0whjJwaLVVgBn0jm7AMeMk22HgMIKa4TrhbYDw95K1x41v7Z3pxQ3Hxb1ENcpVEvVMia57LuBV4pvKZNizgmdmpJf6TQrBmoTv9rGr2r86iN-NVdRuxXlCod7TN-nf1C9AzaujfM</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Yang, Gaige</creator><creator>Wu, Zhongwei</creator><creator>Zhu, Huabing</creator><creator>Bi, Haijun</creator><creator>Bai, Yuxuan</creator><creator>Wang, Lei</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0009-0006-0455-4117</orcidid></search><sort><creationdate>20241101</creationdate><title>Exploration of physical recovery techniques and economic viability for retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries</title><author>Yang, Gaige ; Wu, Zhongwei ; Zhu, Huabing ; Bi, Haijun ; Bai, Yuxuan ; Wang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-ea0739064f9e8847cc920dedad70219ffdb0f1cf934e0e7d7dc7f67ad81e6d9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bonding agents</topic><topic>Civil Engineering</topic><topic>Cobalt</topic><topic>Cobalt compounds</topic><topic>Cost benefit analysis</topic><topic>Economics</topic><topic>Electrode materials</topic><topic>Engineering</topic><topic>Environmental impact</topic><topic>Environmental Management</topic><topic>Heat treatment</topic><topic>Heat treatments</topic><topic>Heavy metals</topic><topic>Industrial development</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Manganese</topic><topic>Manganese oxides</topic><topic>Materials recovery</topic><topic>Mathematical models</topic><topic>Nickel</topic><topic>Noble metals</topic><topic>Original Article</topic><topic>Parameter identification</topic><topic>Production costs</topic><topic>Recycling</topic><topic>Waste Management/Waste Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Gaige</creatorcontrib><creatorcontrib>Wu, Zhongwei</creatorcontrib><creatorcontrib>Zhu, Huabing</creatorcontrib><creatorcontrib>Bi, Haijun</creatorcontrib><creatorcontrib>Bai, Yuxuan</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of material cycles and waste management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Gaige</au><au>Wu, Zhongwei</au><au>Zhu, Huabing</au><au>Bi, Haijun</au><au>Bai, Yuxuan</au><au>Wang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploration of physical recovery techniques and economic viability for retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries</atitle><jtitle>Journal of material cycles and waste management</jtitle><stitle>J Mater Cycles Waste Manag</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>26</volume><issue>6</issue><spage>3571</spage><epage>3583</epage><pages>3571-3583</pages><issn>1438-4957</issn><eissn>1611-8227</eissn><abstract>Retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries (NCMs) pose considerable challenges for recycling due to high contamination levels and low efficiency in the recovery process. Despite these complexities, NCMs contain significant amounts of precious metals, making them a substantial untapped resource with immense recycling potential. This study optimizes heat treatment conditions for NCMs focusing on cathode materials and the current collector. The optimal parameters of 280 °C, 2 h, and 60 s were identified through systematic discharge, disassembly, crushing, and sorting processes. Precious metal recovery rates exceeded 90%. Thermogravimetric-thermal differential analysis at 400 °C revealed the complete removal of bonding agents between the electrode materials. A comprehensive cost analysis was conducted using a mathematical model for retired power batteries revenue, scrutinizing the consumption costs and benefits of pyrometallurgical, hydrometallurgical, and physical recovery processes for NCMs. The input–output efficiencies were 6.56%, 28%, and 23%, respectively. This study supports the viability of physical recycling for a future mechanical–chemical combination approach to reduce production costs and environmental impacts. The proposed method holds economic, environmental, and industrial development value and provides a guide for sustainable recycling practices in the lithium-ion battery industry.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10163-024-02061-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0006-0455-4117</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-4957 |
ispartof | Journal of material cycles and waste management, 2024-11, Vol.26 (6), p.3571-3583 |
issn | 1438-4957 1611-8227 |
language | eng |
recordid | cdi_proquest_journals_3119296482 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bonding agents Civil Engineering Cobalt Cobalt compounds Cost benefit analysis Economics Electrode materials Engineering Environmental impact Environmental Management Heat treatment Heat treatments Heavy metals Industrial development Lithium Lithium-ion batteries Manganese Manganese oxides Materials recovery Mathematical models Nickel Noble metals Original Article Parameter identification Production costs Recycling Waste Management/Waste Technology |
title | Exploration of physical recovery techniques and economic viability for retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploration%20of%20physical%20recovery%20techniques%20and%20economic%20viability%20for%20retired%20lithium%20nickel%20cobalt%20manganese%20oxide-type%20lithium-ion%20power%20batteries&rft.jtitle=Journal%20of%20material%20cycles%20and%20waste%20management&rft.au=Yang,%20Gaige&rft.date=2024-11-01&rft.volume=26&rft.issue=6&rft.spage=3571&rft.epage=3583&rft.pages=3571-3583&rft.issn=1438-4957&rft.eissn=1611-8227&rft_id=info:doi/10.1007/s10163-024-02061-y&rft_dat=%3Cproquest_cross%3E3119296482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119296482&rft_id=info:pmid/&rfr_iscdi=true |