Exploration of physical recovery techniques and economic viability for retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries

Retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries (NCMs) pose considerable challenges for recycling due to high contamination levels and low efficiency in the recovery process. Despite these complexities, NCMs contain significant amounts of precious metals, making them a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of material cycles and waste management 2024-11, Vol.26 (6), p.3571-3583
Hauptverfasser: Yang, Gaige, Wu, Zhongwei, Zhu, Huabing, Bi, Haijun, Bai, Yuxuan, Wang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3583
container_issue 6
container_start_page 3571
container_title Journal of material cycles and waste management
container_volume 26
creator Yang, Gaige
Wu, Zhongwei
Zhu, Huabing
Bi, Haijun
Bai, Yuxuan
Wang, Lei
description Retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries (NCMs) pose considerable challenges for recycling due to high contamination levels and low efficiency in the recovery process. Despite these complexities, NCMs contain significant amounts of precious metals, making them a substantial untapped resource with immense recycling potential. This study optimizes heat treatment conditions for NCMs focusing on cathode materials and the current collector. The optimal parameters of 280 °C, 2 h, and 60 s were identified through systematic discharge, disassembly, crushing, and sorting processes. Precious metal recovery rates exceeded 90%. Thermogravimetric-thermal differential analysis at 400 °C revealed the complete removal of bonding agents between the electrode materials. A comprehensive cost analysis was conducted using a mathematical model for retired power batteries revenue, scrutinizing the consumption costs and benefits of pyrometallurgical, hydrometallurgical, and physical recovery processes for NCMs. The input–output efficiencies were 6.56%, 28%, and 23%, respectively. This study supports the viability of physical recycling for a future mechanical–chemical combination approach to reduce production costs and environmental impacts. The proposed method holds economic, environmental, and industrial development value and provides a guide for sustainable recycling practices in the lithium-ion battery industry.
doi_str_mv 10.1007/s10163-024-02061-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119296482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119296482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-ea0739064f9e8847cc920dedad70219ffdb0f1cf934e0e7d7dc7f67ad81e6d9f3</originalsourceid><addsrcrecordid>eNp9kM9KJDEQxhtR8O8LeArsOWsl3XY6x0V0d0HwoueQSSpOtCdpk4zaD-L7mnEUbx6KKorfVx_1Nc0pg98MQJxlBqxvKfCuFvSMzjvNAesZowPnYrfOXTvQTp6L_eYw5wcALqEVB83b5es0xqSLj4FER6blnL3RI0lo4jOmmRQ0y-Cf1piJDpbUdYgrb8iz1ws_-jITF1PFi09oSV0s_XpFgjePOBITF3osZKXDvQ6YkcRXb5GWecIvlG6cp_iCiSx0KZg85uNmz-kx48lnP2ruri5vL_7R65u__y_-XFPDAQpFDaKV0HdO4jB0whjJwaLVVgBn0jm7AMeMk22HgMIKa4TrhbYDw95K1x41v7Z3pxQ3Hxb1ENcpVEvVMia57LuBV4pvKZNizgmdmpJf6TQrBmoTv9rGr2r86iN-NVdRuxXlCod7TN-nf1C9AzaujfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119296482</pqid></control><display><type>article</type><title>Exploration of physical recovery techniques and economic viability for retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Gaige ; Wu, Zhongwei ; Zhu, Huabing ; Bi, Haijun ; Bai, Yuxuan ; Wang, Lei</creator><creatorcontrib>Yang, Gaige ; Wu, Zhongwei ; Zhu, Huabing ; Bi, Haijun ; Bai, Yuxuan ; Wang, Lei</creatorcontrib><description>Retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries (NCMs) pose considerable challenges for recycling due to high contamination levels and low efficiency in the recovery process. Despite these complexities, NCMs contain significant amounts of precious metals, making them a substantial untapped resource with immense recycling potential. This study optimizes heat treatment conditions for NCMs focusing on cathode materials and the current collector. The optimal parameters of 280 °C, 2 h, and 60 s were identified through systematic discharge, disassembly, crushing, and sorting processes. Precious metal recovery rates exceeded 90%. Thermogravimetric-thermal differential analysis at 400 °C revealed the complete removal of bonding agents between the electrode materials. A comprehensive cost analysis was conducted using a mathematical model for retired power batteries revenue, scrutinizing the consumption costs and benefits of pyrometallurgical, hydrometallurgical, and physical recovery processes for NCMs. The input–output efficiencies were 6.56%, 28%, and 23%, respectively. This study supports the viability of physical recycling for a future mechanical–chemical combination approach to reduce production costs and environmental impacts. The proposed method holds economic, environmental, and industrial development value and provides a guide for sustainable recycling practices in the lithium-ion battery industry.</description><identifier>ISSN: 1438-4957</identifier><identifier>EISSN: 1611-8227</identifier><identifier>DOI: 10.1007/s10163-024-02061-y</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Bonding agents ; Civil Engineering ; Cobalt ; Cobalt compounds ; Cost benefit analysis ; Economics ; Electrode materials ; Engineering ; Environmental impact ; Environmental Management ; Heat treatment ; Heat treatments ; Heavy metals ; Industrial development ; Lithium ; Lithium-ion batteries ; Manganese ; Manganese oxides ; Materials recovery ; Mathematical models ; Nickel ; Noble metals ; Original Article ; Parameter identification ; Production costs ; Recycling ; Waste Management/Waste Technology</subject><ispartof>Journal of material cycles and waste management, 2024-11, Vol.26 (6), p.3571-3583</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Japan KK, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-ea0739064f9e8847cc920dedad70219ffdb0f1cf934e0e7d7dc7f67ad81e6d9f3</cites><orcidid>0009-0006-0455-4117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10163-024-02061-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10163-024-02061-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yang, Gaige</creatorcontrib><creatorcontrib>Wu, Zhongwei</creatorcontrib><creatorcontrib>Zhu, Huabing</creatorcontrib><creatorcontrib>Bi, Haijun</creatorcontrib><creatorcontrib>Bai, Yuxuan</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><title>Exploration of physical recovery techniques and economic viability for retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries</title><title>Journal of material cycles and waste management</title><addtitle>J Mater Cycles Waste Manag</addtitle><description>Retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries (NCMs) pose considerable challenges for recycling due to high contamination levels and low efficiency in the recovery process. Despite these complexities, NCMs contain significant amounts of precious metals, making them a substantial untapped resource with immense recycling potential. This study optimizes heat treatment conditions for NCMs focusing on cathode materials and the current collector. The optimal parameters of 280 °C, 2 h, and 60 s were identified through systematic discharge, disassembly, crushing, and sorting processes. Precious metal recovery rates exceeded 90%. Thermogravimetric-thermal differential analysis at 400 °C revealed the complete removal of bonding agents between the electrode materials. A comprehensive cost analysis was conducted using a mathematical model for retired power batteries revenue, scrutinizing the consumption costs and benefits of pyrometallurgical, hydrometallurgical, and physical recovery processes for NCMs. The input–output efficiencies were 6.56%, 28%, and 23%, respectively. This study supports the viability of physical recycling for a future mechanical–chemical combination approach to reduce production costs and environmental impacts. The proposed method holds economic, environmental, and industrial development value and provides a guide for sustainable recycling practices in the lithium-ion battery industry.</description><subject>Bonding agents</subject><subject>Civil Engineering</subject><subject>Cobalt</subject><subject>Cobalt compounds</subject><subject>Cost benefit analysis</subject><subject>Economics</subject><subject>Electrode materials</subject><subject>Engineering</subject><subject>Environmental impact</subject><subject>Environmental Management</subject><subject>Heat treatment</subject><subject>Heat treatments</subject><subject>Heavy metals</subject><subject>Industrial development</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Manganese</subject><subject>Manganese oxides</subject><subject>Materials recovery</subject><subject>Mathematical models</subject><subject>Nickel</subject><subject>Noble metals</subject><subject>Original Article</subject><subject>Parameter identification</subject><subject>Production costs</subject><subject>Recycling</subject><subject>Waste Management/Waste Technology</subject><issn>1438-4957</issn><issn>1611-8227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KJDEQxhtR8O8LeArsOWsl3XY6x0V0d0HwoueQSSpOtCdpk4zaD-L7mnEUbx6KKorfVx_1Nc0pg98MQJxlBqxvKfCuFvSMzjvNAesZowPnYrfOXTvQTp6L_eYw5wcALqEVB83b5es0xqSLj4FER6blnL3RI0lo4jOmmRQ0y-Cf1piJDpbUdYgrb8iz1ws_-jITF1PFi09oSV0s_XpFgjePOBITF3osZKXDvQ6YkcRXb5GWecIvlG6cp_iCiSx0KZg85uNmz-kx48lnP2ruri5vL_7R65u__y_-XFPDAQpFDaKV0HdO4jB0whjJwaLVVgBn0jm7AMeMk22HgMIKa4TrhbYDw95K1x41v7Z3pxQ3Hxb1ENcpVEvVMia57LuBV4pvKZNizgmdmpJf6TQrBmoTv9rGr2r86iN-NVdRuxXlCod7TN-nf1C9AzaujfM</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Yang, Gaige</creator><creator>Wu, Zhongwei</creator><creator>Zhu, Huabing</creator><creator>Bi, Haijun</creator><creator>Bai, Yuxuan</creator><creator>Wang, Lei</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0009-0006-0455-4117</orcidid></search><sort><creationdate>20241101</creationdate><title>Exploration of physical recovery techniques and economic viability for retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries</title><author>Yang, Gaige ; Wu, Zhongwei ; Zhu, Huabing ; Bi, Haijun ; Bai, Yuxuan ; Wang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-ea0739064f9e8847cc920dedad70219ffdb0f1cf934e0e7d7dc7f67ad81e6d9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bonding agents</topic><topic>Civil Engineering</topic><topic>Cobalt</topic><topic>Cobalt compounds</topic><topic>Cost benefit analysis</topic><topic>Economics</topic><topic>Electrode materials</topic><topic>Engineering</topic><topic>Environmental impact</topic><topic>Environmental Management</topic><topic>Heat treatment</topic><topic>Heat treatments</topic><topic>Heavy metals</topic><topic>Industrial development</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Manganese</topic><topic>Manganese oxides</topic><topic>Materials recovery</topic><topic>Mathematical models</topic><topic>Nickel</topic><topic>Noble metals</topic><topic>Original Article</topic><topic>Parameter identification</topic><topic>Production costs</topic><topic>Recycling</topic><topic>Waste Management/Waste Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Gaige</creatorcontrib><creatorcontrib>Wu, Zhongwei</creatorcontrib><creatorcontrib>Zhu, Huabing</creatorcontrib><creatorcontrib>Bi, Haijun</creatorcontrib><creatorcontrib>Bai, Yuxuan</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of material cycles and waste management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Gaige</au><au>Wu, Zhongwei</au><au>Zhu, Huabing</au><au>Bi, Haijun</au><au>Bai, Yuxuan</au><au>Wang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploration of physical recovery techniques and economic viability for retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries</atitle><jtitle>Journal of material cycles and waste management</jtitle><stitle>J Mater Cycles Waste Manag</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>26</volume><issue>6</issue><spage>3571</spage><epage>3583</epage><pages>3571-3583</pages><issn>1438-4957</issn><eissn>1611-8227</eissn><abstract>Retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries (NCMs) pose considerable challenges for recycling due to high contamination levels and low efficiency in the recovery process. Despite these complexities, NCMs contain significant amounts of precious metals, making them a substantial untapped resource with immense recycling potential. This study optimizes heat treatment conditions for NCMs focusing on cathode materials and the current collector. The optimal parameters of 280 °C, 2 h, and 60 s were identified through systematic discharge, disassembly, crushing, and sorting processes. Precious metal recovery rates exceeded 90%. Thermogravimetric-thermal differential analysis at 400 °C revealed the complete removal of bonding agents between the electrode materials. A comprehensive cost analysis was conducted using a mathematical model for retired power batteries revenue, scrutinizing the consumption costs and benefits of pyrometallurgical, hydrometallurgical, and physical recovery processes for NCMs. The input–output efficiencies were 6.56%, 28%, and 23%, respectively. This study supports the viability of physical recycling for a future mechanical–chemical combination approach to reduce production costs and environmental impacts. The proposed method holds economic, environmental, and industrial development value and provides a guide for sustainable recycling practices in the lithium-ion battery industry.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10163-024-02061-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0006-0455-4117</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1438-4957
ispartof Journal of material cycles and waste management, 2024-11, Vol.26 (6), p.3571-3583
issn 1438-4957
1611-8227
language eng
recordid cdi_proquest_journals_3119296482
source SpringerLink Journals - AutoHoldings
subjects Bonding agents
Civil Engineering
Cobalt
Cobalt compounds
Cost benefit analysis
Economics
Electrode materials
Engineering
Environmental impact
Environmental Management
Heat treatment
Heat treatments
Heavy metals
Industrial development
Lithium
Lithium-ion batteries
Manganese
Manganese oxides
Materials recovery
Mathematical models
Nickel
Noble metals
Original Article
Parameter identification
Production costs
Recycling
Waste Management/Waste Technology
title Exploration of physical recovery techniques and economic viability for retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploration%20of%20physical%20recovery%20techniques%20and%20economic%20viability%20for%20retired%20lithium%20nickel%20cobalt%20manganese%20oxide-type%20lithium-ion%20power%20batteries&rft.jtitle=Journal%20of%20material%20cycles%20and%20waste%20management&rft.au=Yang,%20Gaige&rft.date=2024-11-01&rft.volume=26&rft.issue=6&rft.spage=3571&rft.epage=3583&rft.pages=3571-3583&rft.issn=1438-4957&rft.eissn=1611-8227&rft_id=info:doi/10.1007/s10163-024-02061-y&rft_dat=%3Cproquest_cross%3E3119296482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119296482&rft_id=info:pmid/&rfr_iscdi=true