CL-HOI: Cross-Level Human-Object Interaction Distillation from Vision Large Language Models
Human-object interaction (HOI) detection has seen advancements with Vision Language Models (VLMs), but these methods often depend on extensive manual annotations. Vision Large Language Models (VLLMs) can inherently recognize and reason about interactions at the image level but are computationally he...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gao, Jianjun Chen, Cai Wang, Ruoyu Liu, Wenyang Kim-Hui, Yap Garg, Kratika Boon-Siew, Han |
description | Human-object interaction (HOI) detection has seen advancements with Vision Language Models (VLMs), but these methods often depend on extensive manual annotations. Vision Large Language Models (VLLMs) can inherently recognize and reason about interactions at the image level but are computationally heavy and not designed for instance-level HOI detection. To overcome these limitations, we propose a Cross-Level HOI distillation (CL-HOI) framework, which distills instance-level HOIs from VLLMs image-level understanding without the need for manual annotations. Our approach involves two stages: context distillation, where a Visual Linguistic Translator (VLT) converts visual information into linguistic form, and interaction distillation, where an Interaction Cognition Network (ICN) reasons about spatial, visual, and context relations. We design contrastive distillation losses to transfer image-level context and interaction knowledge from the teacher to the student model, enabling instance-level HOI detection. Evaluations on HICO-DET and V-COCO datasets demonstrate that our CL-HOI surpasses existing weakly supervised methods and VLLM supervised methods, showing its efficacy in detecting HOIs without manual labels. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3119288673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119288673</sourcerecordid><originalsourceid>FETCH-proquest_journals_31192886733</originalsourceid><addsrcrecordid>eNqNit8KgjAchUcQJOU7DLoe6JZ_6tYKBcOb6KYLWTZlMrfab_b8WfQA3ZzzfZwzQx5lLCTphtIF8gH6IAhonNAoYh66ZiXJq2KHM2sASCleQuF8HLgm1a0XjcOFdsLyxkmj8V6Ck0rxr7TWDPgi4cMlt52YUncjn-Bk7kLBCs1brkD4v16i9fFwznLysOY5CnB1b0arp6lmYbilaRonjP33egOxCEHx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119288673</pqid></control><display><type>article</type><title>CL-HOI: Cross-Level Human-Object Interaction Distillation from Vision Large Language Models</title><source>Free E- Journals</source><creator>Gao, Jianjun ; Chen, Cai ; Wang, Ruoyu ; Liu, Wenyang ; Kim-Hui, Yap ; Garg, Kratika ; Boon-Siew, Han</creator><creatorcontrib>Gao, Jianjun ; Chen, Cai ; Wang, Ruoyu ; Liu, Wenyang ; Kim-Hui, Yap ; Garg, Kratika ; Boon-Siew, Han</creatorcontrib><description>Human-object interaction (HOI) detection has seen advancements with Vision Language Models (VLMs), but these methods often depend on extensive manual annotations. Vision Large Language Models (VLLMs) can inherently recognize and reason about interactions at the image level but are computationally heavy and not designed for instance-level HOI detection. To overcome these limitations, we propose a Cross-Level HOI distillation (CL-HOI) framework, which distills instance-level HOIs from VLLMs image-level understanding without the need for manual annotations. Our approach involves two stages: context distillation, where a Visual Linguistic Translator (VLT) converts visual information into linguistic form, and interaction distillation, where an Interaction Cognition Network (ICN) reasons about spatial, visual, and context relations. We design contrastive distillation losses to transfer image-level context and interaction knowledge from the teacher to the student model, enabling instance-level HOI detection. Evaluations on HICO-DET and V-COCO datasets demonstrate that our CL-HOI surpasses existing weakly supervised methods and VLLM supervised methods, showing its efficacy in detecting HOIs without manual labels.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Cognition ; Context ; Knowledge management ; Large language models ; Linguistics ; Vision</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gao, Jianjun</creatorcontrib><creatorcontrib>Chen, Cai</creatorcontrib><creatorcontrib>Wang, Ruoyu</creatorcontrib><creatorcontrib>Liu, Wenyang</creatorcontrib><creatorcontrib>Kim-Hui, Yap</creatorcontrib><creatorcontrib>Garg, Kratika</creatorcontrib><creatorcontrib>Boon-Siew, Han</creatorcontrib><title>CL-HOI: Cross-Level Human-Object Interaction Distillation from Vision Large Language Models</title><title>arXiv.org</title><description>Human-object interaction (HOI) detection has seen advancements with Vision Language Models (VLMs), but these methods often depend on extensive manual annotations. Vision Large Language Models (VLLMs) can inherently recognize and reason about interactions at the image level but are computationally heavy and not designed for instance-level HOI detection. To overcome these limitations, we propose a Cross-Level HOI distillation (CL-HOI) framework, which distills instance-level HOIs from VLLMs image-level understanding without the need for manual annotations. Our approach involves two stages: context distillation, where a Visual Linguistic Translator (VLT) converts visual information into linguistic form, and interaction distillation, where an Interaction Cognition Network (ICN) reasons about spatial, visual, and context relations. We design contrastive distillation losses to transfer image-level context and interaction knowledge from the teacher to the student model, enabling instance-level HOI detection. Evaluations on HICO-DET and V-COCO datasets demonstrate that our CL-HOI surpasses existing weakly supervised methods and VLLM supervised methods, showing its efficacy in detecting HOIs without manual labels.</description><subject>Annotations</subject><subject>Cognition</subject><subject>Context</subject><subject>Knowledge management</subject><subject>Large language models</subject><subject>Linguistics</subject><subject>Vision</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNit8KgjAchUcQJOU7DLoe6JZ_6tYKBcOb6KYLWTZlMrfab_b8WfQA3ZzzfZwzQx5lLCTphtIF8gH6IAhonNAoYh66ZiXJq2KHM2sASCleQuF8HLgm1a0XjcOFdsLyxkmj8V6Ck0rxr7TWDPgi4cMlt52YUncjn-Bk7kLBCs1brkD4v16i9fFwznLysOY5CnB1b0arp6lmYbilaRonjP33egOxCEHx</recordid><startdate>20241021</startdate><enddate>20241021</enddate><creator>Gao, Jianjun</creator><creator>Chen, Cai</creator><creator>Wang, Ruoyu</creator><creator>Liu, Wenyang</creator><creator>Kim-Hui, Yap</creator><creator>Garg, Kratika</creator><creator>Boon-Siew, Han</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241021</creationdate><title>CL-HOI: Cross-Level Human-Object Interaction Distillation from Vision Large Language Models</title><author>Gao, Jianjun ; Chen, Cai ; Wang, Ruoyu ; Liu, Wenyang ; Kim-Hui, Yap ; Garg, Kratika ; Boon-Siew, Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31192886733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Cognition</topic><topic>Context</topic><topic>Knowledge management</topic><topic>Large language models</topic><topic>Linguistics</topic><topic>Vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Gao, Jianjun</creatorcontrib><creatorcontrib>Chen, Cai</creatorcontrib><creatorcontrib>Wang, Ruoyu</creatorcontrib><creatorcontrib>Liu, Wenyang</creatorcontrib><creatorcontrib>Kim-Hui, Yap</creatorcontrib><creatorcontrib>Garg, Kratika</creatorcontrib><creatorcontrib>Boon-Siew, Han</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Jianjun</au><au>Chen, Cai</au><au>Wang, Ruoyu</au><au>Liu, Wenyang</au><au>Kim-Hui, Yap</au><au>Garg, Kratika</au><au>Boon-Siew, Han</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CL-HOI: Cross-Level Human-Object Interaction Distillation from Vision Large Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-10-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Human-object interaction (HOI) detection has seen advancements with Vision Language Models (VLMs), but these methods often depend on extensive manual annotations. Vision Large Language Models (VLLMs) can inherently recognize and reason about interactions at the image level but are computationally heavy and not designed for instance-level HOI detection. To overcome these limitations, we propose a Cross-Level HOI distillation (CL-HOI) framework, which distills instance-level HOIs from VLLMs image-level understanding without the need for manual annotations. Our approach involves two stages: context distillation, where a Visual Linguistic Translator (VLT) converts visual information into linguistic form, and interaction distillation, where an Interaction Cognition Network (ICN) reasons about spatial, visual, and context relations. We design contrastive distillation losses to transfer image-level context and interaction knowledge from the teacher to the student model, enabling instance-level HOI detection. Evaluations on HICO-DET and V-COCO datasets demonstrate that our CL-HOI surpasses existing weakly supervised methods and VLLM supervised methods, showing its efficacy in detecting HOIs without manual labels.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3119288673 |
source | Free E- Journals |
subjects | Annotations Cognition Context Knowledge management Large language models Linguistics Vision |
title | CL-HOI: Cross-Level Human-Object Interaction Distillation from Vision Large Language Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CL-HOI:%20Cross-Level%20Human-Object%20Interaction%20Distillation%20from%20Vision%20Large%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Gao,%20Jianjun&rft.date=2024-10-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3119288673%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119288673&rft_id=info:pmid/&rfr_iscdi=true |