Online Pseudo-Label Unified Object Detection for Multiple Datasets Training
The Unified Object Detection (UOD) task aims to achieve object detection of all merged categories through training on multiple datasets, and is of great significance in comprehensive object detection scenarios. In this paper, we conduct a thorough analysis of the cross datasets missing annotations i...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tang, XiaoJun Wang, Jingru Shangguan, Zeyu Tang, Darun Liu, Yuyu |
description | The Unified Object Detection (UOD) task aims to achieve object detection of all merged categories through training on multiple datasets, and is of great significance in comprehensive object detection scenarios. In this paper, we conduct a thorough analysis of the cross datasets missing annotations issue, and propose an Online Pseudo-Label Unified Object Detection scheme. Our method uses a periodically updated teacher model to generate pseudo-labels for the unlabelled objects in each sub-dataset. This periodical update strategy could better ensure that the accuracy of the teacher model reaches the local maxima and maximized the quality of pseudo-labels. In addition, we survey the influence of overlapped region proposals on the accuracy of box regression. We propose a category specific box regression and a pseudo-label RPN head to improve the recall rate of the Region Proposal Network (PRN). Our experimental results on common used benchmarks (\eg COCO, Object365 and OpenImages) indicates that our online pseudo-label UOD method achieves higher accuracy than existing SOTA methods. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3119288266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119288266</sourcerecordid><originalsourceid>FETCH-proquest_journals_31192882663</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5Hz7oLOiWZucsggo72FlmfsZkbLZv-_956Ad0eg7vu2ARFyJLyh3nKxYTjWma8mLP81xE7FobrQzCgzD0NrnJDjU8jRoU9lB3I748VOhnlDUwWAf3oL2aNEIlvST0BI2Tyijz3rDlIDVh_HPNtudTc7wkk7OfgOTb0QZn5tSKLDvwsuRFIf67vtO_PNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119288266</pqid></control><display><type>article</type><title>Online Pseudo-Label Unified Object Detection for Multiple Datasets Training</title><source>Free E- Journals</source><creator>Tang, XiaoJun ; Wang, Jingru ; Shangguan, Zeyu ; Tang, Darun ; Liu, Yuyu</creator><creatorcontrib>Tang, XiaoJun ; Wang, Jingru ; Shangguan, Zeyu ; Tang, Darun ; Liu, Yuyu</creatorcontrib><description>The Unified Object Detection (UOD) task aims to achieve object detection of all merged categories through training on multiple datasets, and is of great significance in comprehensive object detection scenarios. In this paper, we conduct a thorough analysis of the cross datasets missing annotations issue, and propose an Online Pseudo-Label Unified Object Detection scheme. Our method uses a periodically updated teacher model to generate pseudo-labels for the unlabelled objects in each sub-dataset. This periodical update strategy could better ensure that the accuracy of the teacher model reaches the local maxima and maximized the quality of pseudo-labels. In addition, we survey the influence of overlapped region proposals on the accuracy of box regression. We propose a category specific box regression and a pseudo-label RPN head to improve the recall rate of the Region Proposal Network (PRN). Our experimental results on common used benchmarks (\eg COCO, Object365 and OpenImages) indicates that our online pseudo-label UOD method achieves higher accuracy than existing SOTA methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Annotations ; Datasets ; Labels ; Object recognition ; Regression models ; Teachers</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Tang, XiaoJun</creatorcontrib><creatorcontrib>Wang, Jingru</creatorcontrib><creatorcontrib>Shangguan, Zeyu</creatorcontrib><creatorcontrib>Tang, Darun</creatorcontrib><creatorcontrib>Liu, Yuyu</creatorcontrib><title>Online Pseudo-Label Unified Object Detection for Multiple Datasets Training</title><title>arXiv.org</title><description>The Unified Object Detection (UOD) task aims to achieve object detection of all merged categories through training on multiple datasets, and is of great significance in comprehensive object detection scenarios. In this paper, we conduct a thorough analysis of the cross datasets missing annotations issue, and propose an Online Pseudo-Label Unified Object Detection scheme. Our method uses a periodically updated teacher model to generate pseudo-labels for the unlabelled objects in each sub-dataset. This periodical update strategy could better ensure that the accuracy of the teacher model reaches the local maxima and maximized the quality of pseudo-labels. In addition, we survey the influence of overlapped region proposals on the accuracy of box regression. We propose a category specific box regression and a pseudo-label RPN head to improve the recall rate of the Region Proposal Network (PRN). Our experimental results on common used benchmarks (\eg COCO, Object365 and OpenImages) indicates that our online pseudo-label UOD method achieves higher accuracy than existing SOTA methods.</description><subject>Accuracy</subject><subject>Annotations</subject><subject>Datasets</subject><subject>Labels</subject><subject>Object recognition</subject><subject>Regression models</subject><subject>Teachers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNykELgjAYgOERBEn5Hz7oLOiWZucsggo72FlmfsZkbLZv-_956Ad0eg7vu2ARFyJLyh3nKxYTjWma8mLP81xE7FobrQzCgzD0NrnJDjU8jRoU9lB3I748VOhnlDUwWAf3oL2aNEIlvST0BI2Tyijz3rDlIDVh_HPNtudTc7wkk7OfgOTb0QZn5tSKLDvwsuRFIf67vtO_PNA</recordid><startdate>20241021</startdate><enddate>20241021</enddate><creator>Tang, XiaoJun</creator><creator>Wang, Jingru</creator><creator>Shangguan, Zeyu</creator><creator>Tang, Darun</creator><creator>Liu, Yuyu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241021</creationdate><title>Online Pseudo-Label Unified Object Detection for Multiple Datasets Training</title><author>Tang, XiaoJun ; Wang, Jingru ; Shangguan, Zeyu ; Tang, Darun ; Liu, Yuyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31192882663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Annotations</topic><topic>Datasets</topic><topic>Labels</topic><topic>Object recognition</topic><topic>Regression models</topic><topic>Teachers</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, XiaoJun</creatorcontrib><creatorcontrib>Wang, Jingru</creatorcontrib><creatorcontrib>Shangguan, Zeyu</creatorcontrib><creatorcontrib>Tang, Darun</creatorcontrib><creatorcontrib>Liu, Yuyu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, XiaoJun</au><au>Wang, Jingru</au><au>Shangguan, Zeyu</au><au>Tang, Darun</au><au>Liu, Yuyu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Online Pseudo-Label Unified Object Detection for Multiple Datasets Training</atitle><jtitle>arXiv.org</jtitle><date>2024-10-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The Unified Object Detection (UOD) task aims to achieve object detection of all merged categories through training on multiple datasets, and is of great significance in comprehensive object detection scenarios. In this paper, we conduct a thorough analysis of the cross datasets missing annotations issue, and propose an Online Pseudo-Label Unified Object Detection scheme. Our method uses a periodically updated teacher model to generate pseudo-labels for the unlabelled objects in each sub-dataset. This periodical update strategy could better ensure that the accuracy of the teacher model reaches the local maxima and maximized the quality of pseudo-labels. In addition, we survey the influence of overlapped region proposals on the accuracy of box regression. We propose a category specific box regression and a pseudo-label RPN head to improve the recall rate of the Region Proposal Network (PRN). Our experimental results on common used benchmarks (\eg COCO, Object365 and OpenImages) indicates that our online pseudo-label UOD method achieves higher accuracy than existing SOTA methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3119288266 |
source | Free E- Journals |
subjects | Accuracy Annotations Datasets Labels Object recognition Regression models Teachers |
title | Online Pseudo-Label Unified Object Detection for Multiple Datasets Training |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A56%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Online%20Pseudo-Label%20Unified%20Object%20Detection%20for%20Multiple%20Datasets%20Training&rft.jtitle=arXiv.org&rft.au=Tang,%20XiaoJun&rft.date=2024-10-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3119288266%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119288266&rft_id=info:pmid/&rfr_iscdi=true |