A unified local projection-based stabilized virtual element method for the coupled Stokes-Darcy problem
In this work, we propose and analyze a new stabilized virtual element method for the coupled Stokes-Darcy problem with Beavers-Joseph-Saffman interface condition on polygonal meshes. We derive two variants of local projection stabilization methods for the coupled Stokes-Darcy problem. The significan...
Gespeichert in:
Veröffentlicht in: | Advances in computational mathematics 2024-12, Vol.50 (6), Article 106 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Advances in computational mathematics |
container_volume | 50 |
creator | Mishra, Sudheer Natarajan, E. |
description | In this work, we propose and analyze a new stabilized virtual element method for the coupled Stokes-Darcy problem with Beavers-Joseph-Saffman interface condition on polygonal meshes. We derive two variants of local projection stabilization methods for the coupled Stokes-Darcy problem. The significance of local projection-based stabilization terms is that they provide reasonable control of the pressure component of the Stokes flow without involving higher-order derivative terms. The discrete inf-sup condition of the coupled Stokes-Darcy problem is established for the equal-order virtual element triplets involving velocity, hydraulic head, and pressure. The optimal error estimates are derived using the equal-order virtual elements in the energy and L2 norms. The proposed methods have several advantages: mass conservative, avoiding the coupling of the solution components, more accessible to implement, and performing efficiently on hybrid polygonal elements. Numerical experiments are conducted to depict the flexibility of the proposed methods, validating the theoretical results. |
doi_str_mv | 10.1007/s10444-024-10199-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119174148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119174148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c156t-4f48ff1ef3c6d5cd9a3774bad8cbfc6037d61203a1ea83537b45d6b0a76464b53</originalsourceid><addsrcrecordid>eNotkE9PAyEUxInRxFr9Ap428YzyFhZ2j039mzTxoJ4JsGCp26UCa6KfXmo9vcm8X2aSQegSyDUQIm4SEMYYJjXDQKDrMDtCM2hEjbvyOC66uFgAb0_RWUobQkjHRTND74tqGr3ztq-GYNRQ7WLYWJN9GLFWqdgpK-0H_1Pkl495Kowd7NaOudravA595UKs8tpWJky7oWAvOXzYhG9VNN_7PF3wc3Ti1JDsxf-do7f7u9flI149PzwtFytsoOEZM8da58A6anjfmL5TVAimVd8a7QwnVPQcakIVWNXShgrNmp5rogRnnOmGztHVIbf0fk42ZbkJUxxLpaQAHQgGrC1UfaBMDClF6-Qu-q2K3xKI3A8qD4PKMqj8G1Qy-gsIoGo3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119174148</pqid></control><display><type>article</type><title>A unified local projection-based stabilized virtual element method for the coupled Stokes-Darcy problem</title><source>SpringerNature Journals</source><creator>Mishra, Sudheer ; Natarajan, E.</creator><creatorcontrib>Mishra, Sudheer ; Natarajan, E.</creatorcontrib><description>In this work, we propose and analyze a new stabilized virtual element method for the coupled Stokes-Darcy problem with Beavers-Joseph-Saffman interface condition on polygonal meshes. We derive two variants of local projection stabilization methods for the coupled Stokes-Darcy problem. The significance of local projection-based stabilization terms is that they provide reasonable control of the pressure component of the Stokes flow without involving higher-order derivative terms. The discrete inf-sup condition of the coupled Stokes-Darcy problem is established for the equal-order virtual element triplets involving velocity, hydraulic head, and pressure. The optimal error estimates are derived using the equal-order virtual elements in the energy and L2 norms. The proposed methods have several advantages: mass conservative, avoiding the coupling of the solution components, more accessible to implement, and performing efficiently on hybrid polygonal elements. Numerical experiments are conducted to depict the flexibility of the proposed methods, validating the theoretical results.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-024-10199-4</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Polygons ; Pressure head ; Stabilization ; Stokes flow</subject><ispartof>Advances in computational mathematics, 2024-12, Vol.50 (6), Article 106</ispartof><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c156t-4f48ff1ef3c6d5cd9a3774bad8cbfc6037d61203a1ea83537b45d6b0a76464b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mishra, Sudheer</creatorcontrib><creatorcontrib>Natarajan, E.</creatorcontrib><title>A unified local projection-based stabilized virtual element method for the coupled Stokes-Darcy problem</title><title>Advances in computational mathematics</title><description>In this work, we propose and analyze a new stabilized virtual element method for the coupled Stokes-Darcy problem with Beavers-Joseph-Saffman interface condition on polygonal meshes. We derive two variants of local projection stabilization methods for the coupled Stokes-Darcy problem. The significance of local projection-based stabilization terms is that they provide reasonable control of the pressure component of the Stokes flow without involving higher-order derivative terms. The discrete inf-sup condition of the coupled Stokes-Darcy problem is established for the equal-order virtual element triplets involving velocity, hydraulic head, and pressure. The optimal error estimates are derived using the equal-order virtual elements in the energy and L2 norms. The proposed methods have several advantages: mass conservative, avoiding the coupling of the solution components, more accessible to implement, and performing efficiently on hybrid polygonal elements. Numerical experiments are conducted to depict the flexibility of the proposed methods, validating the theoretical results.</description><subject>Polygons</subject><subject>Pressure head</subject><subject>Stabilization</subject><subject>Stokes flow</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE9PAyEUxInRxFr9Ap428YzyFhZ2j039mzTxoJ4JsGCp26UCa6KfXmo9vcm8X2aSQegSyDUQIm4SEMYYJjXDQKDrMDtCM2hEjbvyOC66uFgAb0_RWUobQkjHRTND74tqGr3ztq-GYNRQ7WLYWJN9GLFWqdgpK-0H_1Pkl495Kowd7NaOudravA595UKs8tpWJky7oWAvOXzYhG9VNN_7PF3wc3Ti1JDsxf-do7f7u9flI149PzwtFytsoOEZM8da58A6anjfmL5TVAimVd8a7QwnVPQcakIVWNXShgrNmp5rogRnnOmGztHVIbf0fk42ZbkJUxxLpaQAHQgGrC1UfaBMDClF6-Qu-q2K3xKI3A8qD4PKMqj8G1Qy-gsIoGo3</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Mishra, Sudheer</creator><creator>Natarajan, E.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>A unified local projection-based stabilized virtual element method for the coupled Stokes-Darcy problem</title><author>Mishra, Sudheer ; Natarajan, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c156t-4f48ff1ef3c6d5cd9a3774bad8cbfc6037d61203a1ea83537b45d6b0a76464b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Polygons</topic><topic>Pressure head</topic><topic>Stabilization</topic><topic>Stokes flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Sudheer</creatorcontrib><creatorcontrib>Natarajan, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Sudheer</au><au>Natarajan, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A unified local projection-based stabilized virtual element method for the coupled Stokes-Darcy problem</atitle><jtitle>Advances in computational mathematics</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>50</volume><issue>6</issue><artnum>106</artnum><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>In this work, we propose and analyze a new stabilized virtual element method for the coupled Stokes-Darcy problem with Beavers-Joseph-Saffman interface condition on polygonal meshes. We derive two variants of local projection stabilization methods for the coupled Stokes-Darcy problem. The significance of local projection-based stabilization terms is that they provide reasonable control of the pressure component of the Stokes flow without involving higher-order derivative terms. The discrete inf-sup condition of the coupled Stokes-Darcy problem is established for the equal-order virtual element triplets involving velocity, hydraulic head, and pressure. The optimal error estimates are derived using the equal-order virtual elements in the energy and L2 norms. The proposed methods have several advantages: mass conservative, avoiding the coupling of the solution components, more accessible to implement, and performing efficiently on hybrid polygonal elements. Numerical experiments are conducted to depict the flexibility of the proposed methods, validating the theoretical results.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10444-024-10199-4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1019-7168 |
ispartof | Advances in computational mathematics, 2024-12, Vol.50 (6), Article 106 |
issn | 1019-7168 1572-9044 |
language | eng |
recordid | cdi_proquest_journals_3119174148 |
source | SpringerNature Journals |
subjects | Polygons Pressure head Stabilization Stokes flow |
title | A unified local projection-based stabilized virtual element method for the coupled Stokes-Darcy problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20unified%20local%20projection-based%20stabilized%20virtual%20element%20method%20for%20the%20coupled%20Stokes-Darcy%20problem&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=Mishra,%20Sudheer&rft.date=2024-12-01&rft.volume=50&rft.issue=6&rft.artnum=106&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-024-10199-4&rft_dat=%3Cproquest_cross%3E3119174148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119174148&rft_id=info:pmid/&rfr_iscdi=true |