A threshold changeable dynamic quantum secret sharing scheme with cheating identification

Quantum secret sharing holds an important place in quantum cryptography. In this paper, a threshold changeable dynamic quantum secret sharing scheme with cheating identification is firstly proposed based on the Chinese Remainder Theorem. On the premise of not altering the shared secret and the priva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2024-10, Vol.23 (10), Article 358
Hauptverfasser: Li, Fulin, Wu, Qingao, Lin, Changlu, Zhu, Shixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Quantum information processing
container_volume 23
creator Li, Fulin
Wu, Qingao
Lin, Changlu
Zhu, Shixin
description Quantum secret sharing holds an important place in quantum cryptography. In this paper, a threshold changeable dynamic quantum secret sharing scheme with cheating identification is firstly proposed based on the Chinese Remainder Theorem. On the premise of not altering the shared secret and the private shares of the original participants, our scheme realizes the dynamic updating of participants and for the first time achieves the changeable threshold in the quantum environment, which greatly improves the flexibility and practicality of the scheme. In addition, we generalize the entanglement swapping equations of Bell states in 2-dimension to d -dimension. During the reconstruction phase, our scheme can timely detect and identify the cheating behaviors based on the randomized components and the entanglement swapping equations of d -dimensional Bell states. Meanwhile, the randomized components ensure privacy protection for shares and avoid the interference of invalid shares when recovering the secret. Security analysis shows that our scheme is resistant to not only a series of typical external attacks but also forgery, collusion, and dishonest revoked participant attacks. Compared with the existing schemes, our scheme is not only more secure and efficient but also has lower computational consumption.
doi_str_mv 10.1007/s11128-024-04572-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119174091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119174091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-5e625fd14daf509b2db67ea898ec04921715908ed10729d3bf8eb68adc322d0a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ7M2Hkuq4qXVIkNLFhZjj1pUjVJazui_D0pQYIVq3no3juaw9g1wi0CZHceEUUegYgjiJNMRIcTNsMkkxFKKU7_9OfswvsNgMA0T2fsfcFD7cjX_dZyU-tuTbrcErefnW4bw_eD7sLQck_GUeC-1q7p1tybmlriH02oRxfpcFw2lrrQVI0Zx767ZGeV3nq6-qlz9vZw_7p8ilYvj8_LxSoyAiBECaUiqSzGVlcJFKWwZZqRzoucDMSFwAyTAnKyCJkorCyrnMo019ZIISxoOWc3U-7O9fuBfFCbfnDdeFJJxAKzGAocVWJSGdd776hSO9e02n0qBHVEqCaEakSovhGqw2iSk8nvjl-T-43-x_UF9OF1uA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119174091</pqid></control><display><type>article</type><title>A threshold changeable dynamic quantum secret sharing scheme with cheating identification</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Fulin ; Wu, Qingao ; Lin, Changlu ; Zhu, Shixin</creator><creatorcontrib>Li, Fulin ; Wu, Qingao ; Lin, Changlu ; Zhu, Shixin</creatorcontrib><description>Quantum secret sharing holds an important place in quantum cryptography. In this paper, a threshold changeable dynamic quantum secret sharing scheme with cheating identification is firstly proposed based on the Chinese Remainder Theorem. On the premise of not altering the shared secret and the private shares of the original participants, our scheme realizes the dynamic updating of participants and for the first time achieves the changeable threshold in the quantum environment, which greatly improves the flexibility and practicality of the scheme. In addition, we generalize the entanglement swapping equations of Bell states in 2-dimension to d -dimension. During the reconstruction phase, our scheme can timely detect and identify the cheating behaviors based on the randomized components and the entanglement swapping equations of d -dimensional Bell states. Meanwhile, the randomized components ensure privacy protection for shares and avoid the interference of invalid shares when recovering the secret. Security analysis shows that our scheme is resistant to not only a series of typical external attacks but also forgery, collusion, and dishonest revoked participant attacks. Compared with the existing schemes, our scheme is not only more secure and efficient but also has lower computational consumption.</description><identifier>ISSN: 1573-1332</identifier><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-024-04572-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cheating ; Data Structures and Information Theory ; Dimensional analysis ; Mathematical Physics ; Physics ; Physics and Astronomy ; Privacy ; Quantum Computing ; Quantum cryptography ; Quantum entanglement ; Quantum Information Technology ; Quantum Physics ; Spintronics</subject><ispartof>Quantum information processing, 2024-10, Vol.23 (10), Article 358</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-5e625fd14daf509b2db67ea898ec04921715908ed10729d3bf8eb68adc322d0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-024-04572-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-024-04572-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Li, Fulin</creatorcontrib><creatorcontrib>Wu, Qingao</creatorcontrib><creatorcontrib>Lin, Changlu</creatorcontrib><creatorcontrib>Zhu, Shixin</creatorcontrib><title>A threshold changeable dynamic quantum secret sharing scheme with cheating identification</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>Quantum secret sharing holds an important place in quantum cryptography. In this paper, a threshold changeable dynamic quantum secret sharing scheme with cheating identification is firstly proposed based on the Chinese Remainder Theorem. On the premise of not altering the shared secret and the private shares of the original participants, our scheme realizes the dynamic updating of participants and for the first time achieves the changeable threshold in the quantum environment, which greatly improves the flexibility and practicality of the scheme. In addition, we generalize the entanglement swapping equations of Bell states in 2-dimension to d -dimension. During the reconstruction phase, our scheme can timely detect and identify the cheating behaviors based on the randomized components and the entanglement swapping equations of d -dimensional Bell states. Meanwhile, the randomized components ensure privacy protection for shares and avoid the interference of invalid shares when recovering the secret. Security analysis shows that our scheme is resistant to not only a series of typical external attacks but also forgery, collusion, and dishonest revoked participant attacks. Compared with the existing schemes, our scheme is not only more secure and efficient but also has lower computational consumption.</description><subject>Cheating</subject><subject>Data Structures and Information Theory</subject><subject>Dimensional analysis</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Privacy</subject><subject>Quantum Computing</subject><subject>Quantum cryptography</subject><subject>Quantum entanglement</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><issn>1573-1332</issn><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ7M2Hkuq4qXVIkNLFhZjj1pUjVJazui_D0pQYIVq3no3juaw9g1wi0CZHceEUUegYgjiJNMRIcTNsMkkxFKKU7_9OfswvsNgMA0T2fsfcFD7cjX_dZyU-tuTbrcErefnW4bw_eD7sLQck_GUeC-1q7p1tybmlriH02oRxfpcFw2lrrQVI0Zx767ZGeV3nq6-qlz9vZw_7p8ilYvj8_LxSoyAiBECaUiqSzGVlcJFKWwZZqRzoucDMSFwAyTAnKyCJkorCyrnMo019ZIISxoOWc3U-7O9fuBfFCbfnDdeFJJxAKzGAocVWJSGdd776hSO9e02n0qBHVEqCaEakSovhGqw2iSk8nvjl-T-43-x_UF9OF1uA</recordid><startdate>20241021</startdate><enddate>20241021</enddate><creator>Li, Fulin</creator><creator>Wu, Qingao</creator><creator>Lin, Changlu</creator><creator>Zhu, Shixin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241021</creationdate><title>A threshold changeable dynamic quantum secret sharing scheme with cheating identification</title><author>Li, Fulin ; Wu, Qingao ; Lin, Changlu ; Zhu, Shixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-5e625fd14daf509b2db67ea898ec04921715908ed10729d3bf8eb68adc322d0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cheating</topic><topic>Data Structures and Information Theory</topic><topic>Dimensional analysis</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Privacy</topic><topic>Quantum Computing</topic><topic>Quantum cryptography</topic><topic>Quantum entanglement</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fulin</creatorcontrib><creatorcontrib>Wu, Qingao</creatorcontrib><creatorcontrib>Lin, Changlu</creatorcontrib><creatorcontrib>Zhu, Shixin</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fulin</au><au>Wu, Qingao</au><au>Lin, Changlu</au><au>Zhu, Shixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A threshold changeable dynamic quantum secret sharing scheme with cheating identification</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2024-10-21</date><risdate>2024</risdate><volume>23</volume><issue>10</issue><artnum>358</artnum><issn>1573-1332</issn><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>Quantum secret sharing holds an important place in quantum cryptography. In this paper, a threshold changeable dynamic quantum secret sharing scheme with cheating identification is firstly proposed based on the Chinese Remainder Theorem. On the premise of not altering the shared secret and the private shares of the original participants, our scheme realizes the dynamic updating of participants and for the first time achieves the changeable threshold in the quantum environment, which greatly improves the flexibility and practicality of the scheme. In addition, we generalize the entanglement swapping equations of Bell states in 2-dimension to d -dimension. During the reconstruction phase, our scheme can timely detect and identify the cheating behaviors based on the randomized components and the entanglement swapping equations of d -dimensional Bell states. Meanwhile, the randomized components ensure privacy protection for shares and avoid the interference of invalid shares when recovering the secret. Security analysis shows that our scheme is resistant to not only a series of typical external attacks but also forgery, collusion, and dishonest revoked participant attacks. Compared with the existing schemes, our scheme is not only more secure and efficient but also has lower computational consumption.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-024-04572-x</doi></addata></record>
fulltext fulltext
identifier ISSN: 1573-1332
ispartof Quantum information processing, 2024-10, Vol.23 (10), Article 358
issn 1573-1332
1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_3119174091
source SpringerLink Journals - AutoHoldings
subjects Cheating
Data Structures and Information Theory
Dimensional analysis
Mathematical Physics
Physics
Physics and Astronomy
Privacy
Quantum Computing
Quantum cryptography
Quantum entanglement
Quantum Information Technology
Quantum Physics
Spintronics
title A threshold changeable dynamic quantum secret sharing scheme with cheating identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20threshold%20changeable%20dynamic%20quantum%20secret%20sharing%20scheme%20with%20cheating%20identification&rft.jtitle=Quantum%20information%20processing&rft.au=Li,%20Fulin&rft.date=2024-10-21&rft.volume=23&rft.issue=10&rft.artnum=358&rft.issn=1573-1332&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-024-04572-x&rft_dat=%3Cproquest_cross%3E3119174091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119174091&rft_id=info:pmid/&rfr_iscdi=true