Neuroadaptive‐based fixed‐time control for robotic manipulators with uniform prescribed performance under unknown disturbance
Achieving faster convergence, smaller transient overshoots, and higher steady‐state tracking accuracy is essential to improve the efficiency, robustness, and applicability of robotic manipulators. This article introduces an innovative adaptive fixed‐time uniform prescribed performance controller for...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2024-10, Vol.34 (15), p.10683-10703 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10703 |
---|---|
container_issue | 15 |
container_start_page | 10683 |
container_title | International journal of robust and nonlinear control |
container_volume | 34 |
creator | Liu, Chengguo Li, Junyang He, Ye Jing, Anyan Li, Longnan |
description | Achieving faster convergence, smaller transient overshoots, and higher steady‐state tracking accuracy is essential to improve the efficiency, robustness, and applicability of robotic manipulators. This article introduces an innovative adaptive fixed‐time uniform prescribed performance controller for the manipulator facing model uncertainties and unknown disturbances. Initially, by designing a modified prescribed performance function inspired by variable superposition, this study redefines the unified prescribed performance control problem into a simplified parameter selection problem. This approach allows for the incorporation of varied performance metrics within a singular control scheme, addressing both transient and steady‐state performances concurrently without shifting control frameworks. Then, to alleviate computational demands, an adaptive neural network employing a single‐parameter weight update technique compensates for uncertainties of the manipulator dynamic model. Additionally, a disturbance observer is designed to mitigate the impact of non‐parametric disturbances. Moreover, integrating fixed‐time theory with the Lyapunov stability analysis method guarantees the convergence of all error signals to a near‐zero compact neighborhood at a fixed time. Finally, the advantages and comprehensive performance of the proposed method are confirmed by numerical simulations and real‐world experiments. |
doi_str_mv | 10.1002/rnc.7539 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119080687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119080687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1849-4a176ded4a1c72288b4e86636540cf67daeb2a0bb9ca917337aec12da543fe653</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqUgcQRLbNik2HFeXqKKl1QVCcE6cuyJcEnjME4o3cENOCMnwaFs2czr_zQz-gk55WzGGYsvsNWzPBVyj0w4kzLisZD7Y53IqJCxOCRH3q8YC1qcTMjnEgZ0yqiut2_w_fFVKQ-G1vYdTOh6uwaqXduja2jtkKKrXG81XavWdkOjeoeebmz_TIfWBmBNOwSv0VZhSwc4jlSrIcgGMMSX1m1aaqzvB6xG5Zgc1KrxcPKXp-Tp-upxfhst7m_u5peLSPMi_J4onmcGTMg6j-OiqBIoskxkacJ0neVGQRUrVlVSK8lzIXIFmsdGpYmoIUvFlJzt9nboXgfwfblyA7bhZCk4l6xgWZEH6nxHaXTeI9Rlh3atcFtyVo4Gl8HgcjQ4oNEO3dgGtv9y5cNy_sv_ACwCglE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119080687</pqid></control><display><type>article</type><title>Neuroadaptive‐based fixed‐time control for robotic manipulators with uniform prescribed performance under unknown disturbance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Chengguo ; Li, Junyang ; He, Ye ; Jing, Anyan ; Li, Longnan</creator><creatorcontrib>Liu, Chengguo ; Li, Junyang ; He, Ye ; Jing, Anyan ; Li, Longnan</creatorcontrib><description>Achieving faster convergence, smaller transient overshoots, and higher steady‐state tracking accuracy is essential to improve the efficiency, robustness, and applicability of robotic manipulators. This article introduces an innovative adaptive fixed‐time uniform prescribed performance controller for the manipulator facing model uncertainties and unknown disturbances. Initially, by designing a modified prescribed performance function inspired by variable superposition, this study redefines the unified prescribed performance control problem into a simplified parameter selection problem. This approach allows for the incorporation of varied performance metrics within a singular control scheme, addressing both transient and steady‐state performances concurrently without shifting control frameworks. Then, to alleviate computational demands, an adaptive neural network employing a single‐parameter weight update technique compensates for uncertainties of the manipulator dynamic model. Additionally, a disturbance observer is designed to mitigate the impact of non‐parametric disturbances. Moreover, integrating fixed‐time theory with the Lyapunov stability analysis method guarantees the convergence of all error signals to a near‐zero compact neighborhood at a fixed time. Finally, the advantages and comprehensive performance of the proposed method are confirmed by numerical simulations and real‐world experiments.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.7539</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Adaptive control ; adaptive neural network ; barrier Lyapunov function ; Convergence ; disturbance observer ; Disturbance observers ; Dynamic models ; Error analysis ; Error signals ; fixed‐time control ; Manipulators ; Neural networks ; Parameter modification ; Parameter uncertainty ; Performance measurement ; prescribed performance ; Robot arms ; Robot control ; Robust control ; Stability analysis</subject><ispartof>International journal of robust and nonlinear control, 2024-10, Vol.34 (15), p.10683-10703</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1849-4a176ded4a1c72288b4e86636540cf67daeb2a0bb9ca917337aec12da543fe653</cites><orcidid>0000-0003-4023-5376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.7539$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.7539$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Liu, Chengguo</creatorcontrib><creatorcontrib>Li, Junyang</creatorcontrib><creatorcontrib>He, Ye</creatorcontrib><creatorcontrib>Jing, Anyan</creatorcontrib><creatorcontrib>Li, Longnan</creatorcontrib><title>Neuroadaptive‐based fixed‐time control for robotic manipulators with uniform prescribed performance under unknown disturbance</title><title>International journal of robust and nonlinear control</title><description>Achieving faster convergence, smaller transient overshoots, and higher steady‐state tracking accuracy is essential to improve the efficiency, robustness, and applicability of robotic manipulators. This article introduces an innovative adaptive fixed‐time uniform prescribed performance controller for the manipulator facing model uncertainties and unknown disturbances. Initially, by designing a modified prescribed performance function inspired by variable superposition, this study redefines the unified prescribed performance control problem into a simplified parameter selection problem. This approach allows for the incorporation of varied performance metrics within a singular control scheme, addressing both transient and steady‐state performances concurrently without shifting control frameworks. Then, to alleviate computational demands, an adaptive neural network employing a single‐parameter weight update technique compensates for uncertainties of the manipulator dynamic model. Additionally, a disturbance observer is designed to mitigate the impact of non‐parametric disturbances. Moreover, integrating fixed‐time theory with the Lyapunov stability analysis method guarantees the convergence of all error signals to a near‐zero compact neighborhood at a fixed time. Finally, the advantages and comprehensive performance of the proposed method are confirmed by numerical simulations and real‐world experiments.</description><subject>Adaptive control</subject><subject>adaptive neural network</subject><subject>barrier Lyapunov function</subject><subject>Convergence</subject><subject>disturbance observer</subject><subject>Disturbance observers</subject><subject>Dynamic models</subject><subject>Error analysis</subject><subject>Error signals</subject><subject>fixed‐time control</subject><subject>Manipulators</subject><subject>Neural networks</subject><subject>Parameter modification</subject><subject>Parameter uncertainty</subject><subject>Performance measurement</subject><subject>prescribed performance</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robust control</subject><subject>Stability analysis</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EEqUgcQRLbNik2HFeXqKKl1QVCcE6cuyJcEnjME4o3cENOCMnwaFs2czr_zQz-gk55WzGGYsvsNWzPBVyj0w4kzLisZD7Y53IqJCxOCRH3q8YC1qcTMjnEgZ0yqiut2_w_fFVKQ-G1vYdTOh6uwaqXduja2jtkKKrXG81XavWdkOjeoeebmz_TIfWBmBNOwSv0VZhSwc4jlSrIcgGMMSX1m1aaqzvB6xG5Zgc1KrxcPKXp-Tp-upxfhst7m_u5peLSPMi_J4onmcGTMg6j-OiqBIoskxkacJ0neVGQRUrVlVSK8lzIXIFmsdGpYmoIUvFlJzt9nboXgfwfblyA7bhZCk4l6xgWZEH6nxHaXTeI9Rlh3atcFtyVo4Gl8HgcjQ4oNEO3dgGtv9y5cNy_sv_ACwCglE</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Liu, Chengguo</creator><creator>Li, Junyang</creator><creator>He, Ye</creator><creator>Jing, Anyan</creator><creator>Li, Longnan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4023-5376</orcidid></search><sort><creationdate>202410</creationdate><title>Neuroadaptive‐based fixed‐time control for robotic manipulators with uniform prescribed performance under unknown disturbance</title><author>Liu, Chengguo ; Li, Junyang ; He, Ye ; Jing, Anyan ; Li, Longnan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1849-4a176ded4a1c72288b4e86636540cf67daeb2a0bb9ca917337aec12da543fe653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>adaptive neural network</topic><topic>barrier Lyapunov function</topic><topic>Convergence</topic><topic>disturbance observer</topic><topic>Disturbance observers</topic><topic>Dynamic models</topic><topic>Error analysis</topic><topic>Error signals</topic><topic>fixed‐time control</topic><topic>Manipulators</topic><topic>Neural networks</topic><topic>Parameter modification</topic><topic>Parameter uncertainty</topic><topic>Performance measurement</topic><topic>prescribed performance</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robust control</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chengguo</creatorcontrib><creatorcontrib>Li, Junyang</creatorcontrib><creatorcontrib>He, Ye</creatorcontrib><creatorcontrib>Jing, Anyan</creatorcontrib><creatorcontrib>Li, Longnan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chengguo</au><au>Li, Junyang</au><au>He, Ye</au><au>Jing, Anyan</au><au>Li, Longnan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuroadaptive‐based fixed‐time control for robotic manipulators with uniform prescribed performance under unknown disturbance</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2024-10</date><risdate>2024</risdate><volume>34</volume><issue>15</issue><spage>10683</spage><epage>10703</epage><pages>10683-10703</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Achieving faster convergence, smaller transient overshoots, and higher steady‐state tracking accuracy is essential to improve the efficiency, robustness, and applicability of robotic manipulators. This article introduces an innovative adaptive fixed‐time uniform prescribed performance controller for the manipulator facing model uncertainties and unknown disturbances. Initially, by designing a modified prescribed performance function inspired by variable superposition, this study redefines the unified prescribed performance control problem into a simplified parameter selection problem. This approach allows for the incorporation of varied performance metrics within a singular control scheme, addressing both transient and steady‐state performances concurrently without shifting control frameworks. Then, to alleviate computational demands, an adaptive neural network employing a single‐parameter weight update technique compensates for uncertainties of the manipulator dynamic model. Additionally, a disturbance observer is designed to mitigate the impact of non‐parametric disturbances. Moreover, integrating fixed‐time theory with the Lyapunov stability analysis method guarantees the convergence of all error signals to a near‐zero compact neighborhood at a fixed time. Finally, the advantages and comprehensive performance of the proposed method are confirmed by numerical simulations and real‐world experiments.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.7539</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4023-5376</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2024-10, Vol.34 (15), p.10683-10703 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_3119080687 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adaptive control adaptive neural network barrier Lyapunov function Convergence disturbance observer Disturbance observers Dynamic models Error analysis Error signals fixed‐time control Manipulators Neural networks Parameter modification Parameter uncertainty Performance measurement prescribed performance Robot arms Robot control Robust control Stability analysis |
title | Neuroadaptive‐based fixed‐time control for robotic manipulators with uniform prescribed performance under unknown disturbance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuroadaptive%E2%80%90based%20fixed%E2%80%90time%20control%20for%20robotic%20manipulators%20with%20uniform%20prescribed%20performance%20under%20unknown%20disturbance&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Liu,%20Chengguo&rft.date=2024-10&rft.volume=34&rft.issue=15&rft.spage=10683&rft.epage=10703&rft.pages=10683-10703&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.7539&rft_dat=%3Cproquest_cross%3E3119080687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119080687&rft_id=info:pmid/&rfr_iscdi=true |