Data‐based nonlinear learning control for aircraft trajectory tracking via Gaussian process regression

In this article, a new data‐based iterative learning control (ILC) algorithm is proposed via Gaussian process regression (GPR) to accomplish the trajectory tracking objective of aircraft subject to completely unknown dynamics and strong nonlinearities. The nonlinear system input–output relationship...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2024-10, Vol.34 (15), p.10480-10493
Hauptverfasser: Wei, Chuyu, Meng, Deyuan, Zhang, Jingyao, Cai, Kaiquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10493
container_issue 15
container_start_page 10480
container_title International journal of robust and nonlinear control
container_volume 34
creator Wei, Chuyu
Meng, Deyuan
Zhang, Jingyao
Cai, Kaiquan
description In this article, a new data‐based iterative learning control (ILC) algorithm is proposed via Gaussian process regression (GPR) to accomplish the trajectory tracking objective of aircraft subject to completely unknown dynamics and strong nonlinearities. The nonlinear system input–output relationship of the unknown aircraft is formulated through GPR by leveraging historical data, based on which an optimal ILC framework is established. The monotonic convergence analysis of the GPR‐based ILC is explored such that high‐precision tracking tasks can be accomplished without prior model knowledge. Simulation tests are further conducted on a commercial aircraft performing a continuous climb operation to illustrate the effectiveness of the GPR‐based ILC approach.
doi_str_mv 10.1002/rnc.7526
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119080684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119080684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1846-204f19f1313286adb1934f329a89c814eb9cc9eb2cb3d0b70bb15d033550b4413</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKvgIwTcuJmav5lOllK1CkVBdB2STKamjoneTJXufASf0ScxY926uefA_bj3cBA6pmRCCWFnEOxkWrJqB40okbKgjMvdwQtZ1JLxfXSQ0oqQvGNihJ4udK-_P7-MTq7BIYbOB6cBd3kEH5bYxtBD7HAbAWsPFnTb4x70ytk-wmaw9nkA373Gc71OyeuAXyFalxIGt4SsPoZDtNfqLrmjPx2jx6vLh9l1sbib38zOF4WltagKRkRLZUs55ayudGOo5KLlTOpa2poKZ6S10hlmDW-ImRJjaNkQzsuSGCEoH6OT7d0c4W3tUq9WcQ0hv1ScUklqUtUiU6dbykJMCVyrXsG_aNgoStTQo8o9qqHHjBZb9MN3bvMvp-5vZ7_8DyyIdhM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119080684</pqid></control><display><type>article</type><title>Data‐based nonlinear learning control for aircraft trajectory tracking via Gaussian process regression</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wei, Chuyu ; Meng, Deyuan ; Zhang, Jingyao ; Cai, Kaiquan</creator><creatorcontrib>Wei, Chuyu ; Meng, Deyuan ; Zhang, Jingyao ; Cai, Kaiquan</creatorcontrib><description>In this article, a new data‐based iterative learning control (ILC) algorithm is proposed via Gaussian process regression (GPR) to accomplish the trajectory tracking objective of aircraft subject to completely unknown dynamics and strong nonlinearities. The nonlinear system input–output relationship of the unknown aircraft is formulated through GPR by leveraging historical data, based on which an optimal ILC framework is established. The monotonic convergence analysis of the GPR‐based ILC is explored such that high‐precision tracking tasks can be accomplished without prior model knowledge. Simulation tests are further conducted on a commercial aircraft performing a continuous climb operation to illustrate the effectiveness of the GPR‐based ILC approach.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.7526</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Aircraft control ; Aircraft performance ; aircraft trajectory tracking ; Algorithms ; Commercial aircraft ; Gaussian process ; Gaussian process regression ; iterative learning control ; Machine learning ; Nonlinear control ; Nonlinear dynamics ; Nonlinear systems ; Nonlinearity ; Tracking</subject><ispartof>International journal of robust and nonlinear control, 2024-10, Vol.34 (15), p.10480-10493</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1846-204f19f1313286adb1934f329a89c814eb9cc9eb2cb3d0b70bb15d033550b4413</cites><orcidid>0000-0003-4065-8424 ; 0009-0004-1341-2976 ; 0000-0002-0990-0166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.7526$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.7526$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wei, Chuyu</creatorcontrib><creatorcontrib>Meng, Deyuan</creatorcontrib><creatorcontrib>Zhang, Jingyao</creatorcontrib><creatorcontrib>Cai, Kaiquan</creatorcontrib><title>Data‐based nonlinear learning control for aircraft trajectory tracking via Gaussian process regression</title><title>International journal of robust and nonlinear control</title><description>In this article, a new data‐based iterative learning control (ILC) algorithm is proposed via Gaussian process regression (GPR) to accomplish the trajectory tracking objective of aircraft subject to completely unknown dynamics and strong nonlinearities. The nonlinear system input–output relationship of the unknown aircraft is formulated through GPR by leveraging historical data, based on which an optimal ILC framework is established. The monotonic convergence analysis of the GPR‐based ILC is explored such that high‐precision tracking tasks can be accomplished without prior model knowledge. Simulation tests are further conducted on a commercial aircraft performing a continuous climb operation to illustrate the effectiveness of the GPR‐based ILC approach.</description><subject>Aircraft control</subject><subject>Aircraft performance</subject><subject>aircraft trajectory tracking</subject><subject>Algorithms</subject><subject>Commercial aircraft</subject><subject>Gaussian process</subject><subject>Gaussian process regression</subject><subject>iterative learning control</subject><subject>Machine learning</subject><subject>Nonlinear control</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Tracking</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKvgIwTcuJmav5lOllK1CkVBdB2STKamjoneTJXufASf0ScxY926uefA_bj3cBA6pmRCCWFnEOxkWrJqB40okbKgjMvdwQtZ1JLxfXSQ0oqQvGNihJ4udK-_P7-MTq7BIYbOB6cBd3kEH5bYxtBD7HAbAWsPFnTb4x70ytk-wmaw9nkA373Gc71OyeuAXyFalxIGt4SsPoZDtNfqLrmjPx2jx6vLh9l1sbib38zOF4WltagKRkRLZUs55ayudGOo5KLlTOpa2poKZ6S10hlmDW-ImRJjaNkQzsuSGCEoH6OT7d0c4W3tUq9WcQ0hv1ScUklqUtUiU6dbykJMCVyrXsG_aNgoStTQo8o9qqHHjBZb9MN3bvMvp-5vZ7_8DyyIdhM</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Wei, Chuyu</creator><creator>Meng, Deyuan</creator><creator>Zhang, Jingyao</creator><creator>Cai, Kaiquan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4065-8424</orcidid><orcidid>https://orcid.org/0009-0004-1341-2976</orcidid><orcidid>https://orcid.org/0000-0002-0990-0166</orcidid></search><sort><creationdate>202410</creationdate><title>Data‐based nonlinear learning control for aircraft trajectory tracking via Gaussian process regression</title><author>Wei, Chuyu ; Meng, Deyuan ; Zhang, Jingyao ; Cai, Kaiquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1846-204f19f1313286adb1934f329a89c814eb9cc9eb2cb3d0b70bb15d033550b4413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aircraft control</topic><topic>Aircraft performance</topic><topic>aircraft trajectory tracking</topic><topic>Algorithms</topic><topic>Commercial aircraft</topic><topic>Gaussian process</topic><topic>Gaussian process regression</topic><topic>iterative learning control</topic><topic>Machine learning</topic><topic>Nonlinear control</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Chuyu</creatorcontrib><creatorcontrib>Meng, Deyuan</creatorcontrib><creatorcontrib>Zhang, Jingyao</creatorcontrib><creatorcontrib>Cai, Kaiquan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Chuyu</au><au>Meng, Deyuan</au><au>Zhang, Jingyao</au><au>Cai, Kaiquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data‐based nonlinear learning control for aircraft trajectory tracking via Gaussian process regression</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2024-10</date><risdate>2024</risdate><volume>34</volume><issue>15</issue><spage>10480</spage><epage>10493</epage><pages>10480-10493</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>In this article, a new data‐based iterative learning control (ILC) algorithm is proposed via Gaussian process regression (GPR) to accomplish the trajectory tracking objective of aircraft subject to completely unknown dynamics and strong nonlinearities. The nonlinear system input–output relationship of the unknown aircraft is formulated through GPR by leveraging historical data, based on which an optimal ILC framework is established. The monotonic convergence analysis of the GPR‐based ILC is explored such that high‐precision tracking tasks can be accomplished without prior model knowledge. Simulation tests are further conducted on a commercial aircraft performing a continuous climb operation to illustrate the effectiveness of the GPR‐based ILC approach.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.7526</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4065-8424</orcidid><orcidid>https://orcid.org/0009-0004-1341-2976</orcidid><orcidid>https://orcid.org/0000-0002-0990-0166</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2024-10, Vol.34 (15), p.10480-10493
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_3119080684
source Wiley Online Library Journals Frontfile Complete
subjects Aircraft control
Aircraft performance
aircraft trajectory tracking
Algorithms
Commercial aircraft
Gaussian process
Gaussian process regression
iterative learning control
Machine learning
Nonlinear control
Nonlinear dynamics
Nonlinear systems
Nonlinearity
Tracking
title Data‐based nonlinear learning control for aircraft trajectory tracking via Gaussian process regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%E2%80%90based%20nonlinear%20learning%20control%20for%20aircraft%20trajectory%20tracking%20via%20Gaussian%20process%20regression&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Wei,%20Chuyu&rft.date=2024-10&rft.volume=34&rft.issue=15&rft.spage=10480&rft.epage=10493&rft.pages=10480-10493&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.7526&rft_dat=%3Cproquest_cross%3E3119080684%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119080684&rft_id=info:pmid/&rfr_iscdi=true