Data‐based nonlinear learning control for aircraft trajectory tracking via Gaussian process regression
In this article, a new data‐based iterative learning control (ILC) algorithm is proposed via Gaussian process regression (GPR) to accomplish the trajectory tracking objective of aircraft subject to completely unknown dynamics and strong nonlinearities. The nonlinear system input–output relationship...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2024-10, Vol.34 (15), p.10480-10493 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10493 |
---|---|
container_issue | 15 |
container_start_page | 10480 |
container_title | International journal of robust and nonlinear control |
container_volume | 34 |
creator | Wei, Chuyu Meng, Deyuan Zhang, Jingyao Cai, Kaiquan |
description | In this article, a new data‐based iterative learning control (ILC) algorithm is proposed via Gaussian process regression (GPR) to accomplish the trajectory tracking objective of aircraft subject to completely unknown dynamics and strong nonlinearities. The nonlinear system input–output relationship of the unknown aircraft is formulated through GPR by leveraging historical data, based on which an optimal ILC framework is established. The monotonic convergence analysis of the GPR‐based ILC is explored such that high‐precision tracking tasks can be accomplished without prior model knowledge. Simulation tests are further conducted on a commercial aircraft performing a continuous climb operation to illustrate the effectiveness of the GPR‐based ILC approach. |
doi_str_mv | 10.1002/rnc.7526 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119080684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119080684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1846-204f19f1313286adb1934f329a89c814eb9cc9eb2cb3d0b70bb15d033550b4413</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKvgIwTcuJmav5lOllK1CkVBdB2STKamjoneTJXufASf0ScxY926uefA_bj3cBA6pmRCCWFnEOxkWrJqB40okbKgjMvdwQtZ1JLxfXSQ0oqQvGNihJ4udK-_P7-MTq7BIYbOB6cBd3kEH5bYxtBD7HAbAWsPFnTb4x70ytk-wmaw9nkA373Gc71OyeuAXyFalxIGt4SsPoZDtNfqLrmjPx2jx6vLh9l1sbib38zOF4WltagKRkRLZUs55ayudGOo5KLlTOpa2poKZ6S10hlmDW-ImRJjaNkQzsuSGCEoH6OT7d0c4W3tUq9WcQ0hv1ScUklqUtUiU6dbykJMCVyrXsG_aNgoStTQo8o9qqHHjBZb9MN3bvMvp-5vZ7_8DyyIdhM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119080684</pqid></control><display><type>article</type><title>Data‐based nonlinear learning control for aircraft trajectory tracking via Gaussian process regression</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wei, Chuyu ; Meng, Deyuan ; Zhang, Jingyao ; Cai, Kaiquan</creator><creatorcontrib>Wei, Chuyu ; Meng, Deyuan ; Zhang, Jingyao ; Cai, Kaiquan</creatorcontrib><description>In this article, a new data‐based iterative learning control (ILC) algorithm is proposed via Gaussian process regression (GPR) to accomplish the trajectory tracking objective of aircraft subject to completely unknown dynamics and strong nonlinearities. The nonlinear system input–output relationship of the unknown aircraft is formulated through GPR by leveraging historical data, based on which an optimal ILC framework is established. The monotonic convergence analysis of the GPR‐based ILC is explored such that high‐precision tracking tasks can be accomplished without prior model knowledge. Simulation tests are further conducted on a commercial aircraft performing a continuous climb operation to illustrate the effectiveness of the GPR‐based ILC approach.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.7526</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Aircraft control ; Aircraft performance ; aircraft trajectory tracking ; Algorithms ; Commercial aircraft ; Gaussian process ; Gaussian process regression ; iterative learning control ; Machine learning ; Nonlinear control ; Nonlinear dynamics ; Nonlinear systems ; Nonlinearity ; Tracking</subject><ispartof>International journal of robust and nonlinear control, 2024-10, Vol.34 (15), p.10480-10493</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1846-204f19f1313286adb1934f329a89c814eb9cc9eb2cb3d0b70bb15d033550b4413</cites><orcidid>0000-0003-4065-8424 ; 0009-0004-1341-2976 ; 0000-0002-0990-0166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.7526$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.7526$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wei, Chuyu</creatorcontrib><creatorcontrib>Meng, Deyuan</creatorcontrib><creatorcontrib>Zhang, Jingyao</creatorcontrib><creatorcontrib>Cai, Kaiquan</creatorcontrib><title>Data‐based nonlinear learning control for aircraft trajectory tracking via Gaussian process regression</title><title>International journal of robust and nonlinear control</title><description>In this article, a new data‐based iterative learning control (ILC) algorithm is proposed via Gaussian process regression (GPR) to accomplish the trajectory tracking objective of aircraft subject to completely unknown dynamics and strong nonlinearities. The nonlinear system input–output relationship of the unknown aircraft is formulated through GPR by leveraging historical data, based on which an optimal ILC framework is established. The monotonic convergence analysis of the GPR‐based ILC is explored such that high‐precision tracking tasks can be accomplished without prior model knowledge. Simulation tests are further conducted on a commercial aircraft performing a continuous climb operation to illustrate the effectiveness of the GPR‐based ILC approach.</description><subject>Aircraft control</subject><subject>Aircraft performance</subject><subject>aircraft trajectory tracking</subject><subject>Algorithms</subject><subject>Commercial aircraft</subject><subject>Gaussian process</subject><subject>Gaussian process regression</subject><subject>iterative learning control</subject><subject>Machine learning</subject><subject>Nonlinear control</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Tracking</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKvgIwTcuJmav5lOllK1CkVBdB2STKamjoneTJXufASf0ScxY926uefA_bj3cBA6pmRCCWFnEOxkWrJqB40okbKgjMvdwQtZ1JLxfXSQ0oqQvGNihJ4udK-_P7-MTq7BIYbOB6cBd3kEH5bYxtBD7HAbAWsPFnTb4x70ytk-wmaw9nkA373Gc71OyeuAXyFalxIGt4SsPoZDtNfqLrmjPx2jx6vLh9l1sbib38zOF4WltagKRkRLZUs55ayudGOo5KLlTOpa2poKZ6S10hlmDW-ImRJjaNkQzsuSGCEoH6OT7d0c4W3tUq9WcQ0hv1ScUklqUtUiU6dbykJMCVyrXsG_aNgoStTQo8o9qqHHjBZb9MN3bvMvp-5vZ7_8DyyIdhM</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Wei, Chuyu</creator><creator>Meng, Deyuan</creator><creator>Zhang, Jingyao</creator><creator>Cai, Kaiquan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4065-8424</orcidid><orcidid>https://orcid.org/0009-0004-1341-2976</orcidid><orcidid>https://orcid.org/0000-0002-0990-0166</orcidid></search><sort><creationdate>202410</creationdate><title>Data‐based nonlinear learning control for aircraft trajectory tracking via Gaussian process regression</title><author>Wei, Chuyu ; Meng, Deyuan ; Zhang, Jingyao ; Cai, Kaiquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1846-204f19f1313286adb1934f329a89c814eb9cc9eb2cb3d0b70bb15d033550b4413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aircraft control</topic><topic>Aircraft performance</topic><topic>aircraft trajectory tracking</topic><topic>Algorithms</topic><topic>Commercial aircraft</topic><topic>Gaussian process</topic><topic>Gaussian process regression</topic><topic>iterative learning control</topic><topic>Machine learning</topic><topic>Nonlinear control</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Chuyu</creatorcontrib><creatorcontrib>Meng, Deyuan</creatorcontrib><creatorcontrib>Zhang, Jingyao</creatorcontrib><creatorcontrib>Cai, Kaiquan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Chuyu</au><au>Meng, Deyuan</au><au>Zhang, Jingyao</au><au>Cai, Kaiquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data‐based nonlinear learning control for aircraft trajectory tracking via Gaussian process regression</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2024-10</date><risdate>2024</risdate><volume>34</volume><issue>15</issue><spage>10480</spage><epage>10493</epage><pages>10480-10493</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>In this article, a new data‐based iterative learning control (ILC) algorithm is proposed via Gaussian process regression (GPR) to accomplish the trajectory tracking objective of aircraft subject to completely unknown dynamics and strong nonlinearities. The nonlinear system input–output relationship of the unknown aircraft is formulated through GPR by leveraging historical data, based on which an optimal ILC framework is established. The monotonic convergence analysis of the GPR‐based ILC is explored such that high‐precision tracking tasks can be accomplished without prior model knowledge. Simulation tests are further conducted on a commercial aircraft performing a continuous climb operation to illustrate the effectiveness of the GPR‐based ILC approach.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.7526</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4065-8424</orcidid><orcidid>https://orcid.org/0009-0004-1341-2976</orcidid><orcidid>https://orcid.org/0000-0002-0990-0166</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2024-10, Vol.34 (15), p.10480-10493 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_3119080684 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aircraft control Aircraft performance aircraft trajectory tracking Algorithms Commercial aircraft Gaussian process Gaussian process regression iterative learning control Machine learning Nonlinear control Nonlinear dynamics Nonlinear systems Nonlinearity Tracking |
title | Data‐based nonlinear learning control for aircraft trajectory tracking via Gaussian process regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%E2%80%90based%20nonlinear%20learning%20control%20for%20aircraft%20trajectory%20tracking%20via%20Gaussian%20process%20regression&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Wei,%20Chuyu&rft.date=2024-10&rft.volume=34&rft.issue=15&rft.spage=10480&rft.epage=10493&rft.pages=10480-10493&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.7526&rft_dat=%3Cproquest_cross%3E3119080684%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119080684&rft_id=info:pmid/&rfr_iscdi=true |