Effects of hard and soft confinement on crystal polymorphism and crystal development in electrospun core‐sheath fibers

This study employs coaxial electrospinning to fabricate core‐sheath fibers composed of crystalline poly(L‐lactide) (PLLA) in the core and amorphous polystyrene (PS) in the sheath. The fibers undergo cold crystallization at temperatures either below (hard confinement) or above (soft confinement) the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science (2020) 2024-09, Vol.62 (18), p.4214-4227
Hauptverfasser: Huang, Hsiu‐Feng, Tsai, Yi‐Hsin, Lo, Chieh‐Tsung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4227
container_issue 18
container_start_page 4214
container_title Journal of polymer science (2020)
container_volume 62
creator Huang, Hsiu‐Feng
Tsai, Yi‐Hsin
Lo, Chieh‐Tsung
description This study employs coaxial electrospinning to fabricate core‐sheath fibers composed of crystalline poly(L‐lactide) (PLLA) in the core and amorphous polystyrene (PS) in the sheath. The fibers undergo cold crystallization at temperatures either below (hard confinement) or above (soft confinement) the glass transition temperature of PS. These conditions are employed to investigate the crystallization behavior of PLLA under multiple confinement types. The electrospinning of PLLA fibers results in the development of coexisting α‐ and α′‐form crystals. The coaxial electrospinning process enhances the extent of chain stretching of PLLA through the PS solution in the outer layer, thereby promoting the close packing of PLLA chains and facilitating the formation of α crystals. Crystallization within soft confinement enables PLLA chains to relax, leading to an increased population of α crystals; this phenomenon is not observed in electrospun single PLLA fibers. A comparison of the crystal parameters in core‐sheath and single PLLA fibers reveals that the crystallite size and the degree of crystallinity are considerably higher in unconfined single PLLA fibers than in confined core‐sheath fibers. The encapsulation of PLLA into the fiber core strongly inhibits the chain movement of PLLA, resulting in a decrease in PLLA crystallizability.
doi_str_mv 10.1002/pol.20240299
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119001179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119001179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1948-3dbed57872b0d97dcaca9ab3427e28d588515102acac43443d3837537e55170a3</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhi0EElXpjQewxJUUr1mOVVUWqVI5wNlyvCipkjjYKZAbj8Az8iSYlnLkNKOZb-af-QG4xGiOESI3vWvmBBGGSFGcgAlJGUkYTovTv5yjczALYYsiTnnKUDoB7ytrjRoCdBZW0msoOw2DswNUrrN1Z1rTDdB1UPkxDLKBUWZsne-rOrR7-NjQ5tU0rt_zdQdNE9d6F_pdnHXefH18hsrIoYK2Lo0PF-DMyiaY2W-cgufb1dPyPllv7h6Wi3WicMHyhOrSaJ7lGSmRLjKtpJKFLCkjmSG55nnOMceIxLJilDGqaU4zTjPDOc6QpFNwddjbe_eyM2EQW7fzXZQUFOMCIYyzIlLXB0rFk4M3VvS-bqUfBUbix14R_xZHeyNOD_hb3ZjxX1Y8btYLignK6TfHpX-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119001179</pqid></control><display><type>article</type><title>Effects of hard and soft confinement on crystal polymorphism and crystal development in electrospun core‐sheath fibers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Hsiu‐Feng ; Tsai, Yi‐Hsin ; Lo, Chieh‐Tsung</creator><creatorcontrib>Huang, Hsiu‐Feng ; Tsai, Yi‐Hsin ; Lo, Chieh‐Tsung</creatorcontrib><description>This study employs coaxial electrospinning to fabricate core‐sheath fibers composed of crystalline poly(L‐lactide) (PLLA) in the core and amorphous polystyrene (PS) in the sheath. The fibers undergo cold crystallization at temperatures either below (hard confinement) or above (soft confinement) the glass transition temperature of PS. These conditions are employed to investigate the crystallization behavior of PLLA under multiple confinement types. The electrospinning of PLLA fibers results in the development of coexisting α‐ and α′‐form crystals. The coaxial electrospinning process enhances the extent of chain stretching of PLLA through the PS solution in the outer layer, thereby promoting the close packing of PLLA chains and facilitating the formation of α crystals. Crystallization within soft confinement enables PLLA chains to relax, leading to an increased population of α crystals; this phenomenon is not observed in electrospun single PLLA fibers. A comparison of the crystal parameters in core‐sheath and single PLLA fibers reveals that the crystallite size and the degree of crystallinity are considerably higher in unconfined single PLLA fibers than in confined core‐sheath fibers. The encapsulation of PLLA into the fiber core strongly inhibits the chain movement of PLLA, resulting in a decrease in PLLA crystallizability.</description><identifier>ISSN: 2642-4150</identifier><identifier>EISSN: 2642-4169</identifier><identifier>DOI: 10.1002/pol.20240299</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Cold crystallization ; Confinement ; core‐sheath fibers ; Crystallites ; Crystallization ; Crystals ; Degree of crystallinity ; Electrospinning ; Fibers ; Glass transition temperature ; Polymorphism ; Polystyrene resins ; Sheaths ; Stretching</subject><ispartof>Journal of polymer science (2020), 2024-09, Vol.62 (18), p.4214-4227</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1948-3dbed57872b0d97dcaca9ab3427e28d588515102acac43443d3837537e55170a3</cites><orcidid>0000-0002-5031-1945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpol.20240299$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpol.20240299$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Huang, Hsiu‐Feng</creatorcontrib><creatorcontrib>Tsai, Yi‐Hsin</creatorcontrib><creatorcontrib>Lo, Chieh‐Tsung</creatorcontrib><title>Effects of hard and soft confinement on crystal polymorphism and crystal development in electrospun core‐sheath fibers</title><title>Journal of polymer science (2020)</title><description>This study employs coaxial electrospinning to fabricate core‐sheath fibers composed of crystalline poly(L‐lactide) (PLLA) in the core and amorphous polystyrene (PS) in the sheath. The fibers undergo cold crystallization at temperatures either below (hard confinement) or above (soft confinement) the glass transition temperature of PS. These conditions are employed to investigate the crystallization behavior of PLLA under multiple confinement types. The electrospinning of PLLA fibers results in the development of coexisting α‐ and α′‐form crystals. The coaxial electrospinning process enhances the extent of chain stretching of PLLA through the PS solution in the outer layer, thereby promoting the close packing of PLLA chains and facilitating the formation of α crystals. Crystallization within soft confinement enables PLLA chains to relax, leading to an increased population of α crystals; this phenomenon is not observed in electrospun single PLLA fibers. A comparison of the crystal parameters in core‐sheath and single PLLA fibers reveals that the crystallite size and the degree of crystallinity are considerably higher in unconfined single PLLA fibers than in confined core‐sheath fibers. The encapsulation of PLLA into the fiber core strongly inhibits the chain movement of PLLA, resulting in a decrease in PLLA crystallizability.</description><subject>Cold crystallization</subject><subject>Confinement</subject><subject>core‐sheath fibers</subject><subject>Crystallites</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Degree of crystallinity</subject><subject>Electrospinning</subject><subject>Fibers</subject><subject>Glass transition temperature</subject><subject>Polymorphism</subject><subject>Polystyrene resins</subject><subject>Sheaths</subject><subject>Stretching</subject><issn>2642-4150</issn><issn>2642-4169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAQhi0EElXpjQewxJUUr1mOVVUWqVI5wNlyvCipkjjYKZAbj8Az8iSYlnLkNKOZb-af-QG4xGiOESI3vWvmBBGGSFGcgAlJGUkYTovTv5yjczALYYsiTnnKUDoB7ytrjRoCdBZW0msoOw2DswNUrrN1Z1rTDdB1UPkxDLKBUWZsne-rOrR7-NjQ5tU0rt_zdQdNE9d6F_pdnHXefH18hsrIoYK2Lo0PF-DMyiaY2W-cgufb1dPyPllv7h6Wi3WicMHyhOrSaJ7lGSmRLjKtpJKFLCkjmSG55nnOMceIxLJilDGqaU4zTjPDOc6QpFNwddjbe_eyM2EQW7fzXZQUFOMCIYyzIlLXB0rFk4M3VvS-bqUfBUbix14R_xZHeyNOD_hb3ZjxX1Y8btYLignK6TfHpX-E</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Huang, Hsiu‐Feng</creator><creator>Tsai, Yi‐Hsin</creator><creator>Lo, Chieh‐Tsung</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5031-1945</orcidid></search><sort><creationdate>20240915</creationdate><title>Effects of hard and soft confinement on crystal polymorphism and crystal development in electrospun core‐sheath fibers</title><author>Huang, Hsiu‐Feng ; Tsai, Yi‐Hsin ; Lo, Chieh‐Tsung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1948-3dbed57872b0d97dcaca9ab3427e28d588515102acac43443d3837537e55170a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cold crystallization</topic><topic>Confinement</topic><topic>core‐sheath fibers</topic><topic>Crystallites</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Degree of crystallinity</topic><topic>Electrospinning</topic><topic>Fibers</topic><topic>Glass transition temperature</topic><topic>Polymorphism</topic><topic>Polystyrene resins</topic><topic>Sheaths</topic><topic>Stretching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hsiu‐Feng</creatorcontrib><creatorcontrib>Tsai, Yi‐Hsin</creatorcontrib><creatorcontrib>Lo, Chieh‐Tsung</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science (2020)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hsiu‐Feng</au><au>Tsai, Yi‐Hsin</au><au>Lo, Chieh‐Tsung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of hard and soft confinement on crystal polymorphism and crystal development in electrospun core‐sheath fibers</atitle><jtitle>Journal of polymer science (2020)</jtitle><date>2024-09-15</date><risdate>2024</risdate><volume>62</volume><issue>18</issue><spage>4214</spage><epage>4227</epage><pages>4214-4227</pages><issn>2642-4150</issn><eissn>2642-4169</eissn><abstract>This study employs coaxial electrospinning to fabricate core‐sheath fibers composed of crystalline poly(L‐lactide) (PLLA) in the core and amorphous polystyrene (PS) in the sheath. The fibers undergo cold crystallization at temperatures either below (hard confinement) or above (soft confinement) the glass transition temperature of PS. These conditions are employed to investigate the crystallization behavior of PLLA under multiple confinement types. The electrospinning of PLLA fibers results in the development of coexisting α‐ and α′‐form crystals. The coaxial electrospinning process enhances the extent of chain stretching of PLLA through the PS solution in the outer layer, thereby promoting the close packing of PLLA chains and facilitating the formation of α crystals. Crystallization within soft confinement enables PLLA chains to relax, leading to an increased population of α crystals; this phenomenon is not observed in electrospun single PLLA fibers. A comparison of the crystal parameters in core‐sheath and single PLLA fibers reveals that the crystallite size and the degree of crystallinity are considerably higher in unconfined single PLLA fibers than in confined core‐sheath fibers. The encapsulation of PLLA into the fiber core strongly inhibits the chain movement of PLLA, resulting in a decrease in PLLA crystallizability.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pol.20240299</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5031-1945</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2642-4150
ispartof Journal of polymer science (2020), 2024-09, Vol.62 (18), p.4214-4227
issn 2642-4150
2642-4169
language eng
recordid cdi_proquest_journals_3119001179
source Wiley Online Library Journals Frontfile Complete
subjects Cold crystallization
Confinement
core‐sheath fibers
Crystallites
Crystallization
Crystals
Degree of crystallinity
Electrospinning
Fibers
Glass transition temperature
Polymorphism
Polystyrene resins
Sheaths
Stretching
title Effects of hard and soft confinement on crystal polymorphism and crystal development in electrospun core‐sheath fibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20hard%20and%20soft%20confinement%20on%20crystal%20polymorphism%20and%20crystal%20development%20in%20electrospun%20core%E2%80%90sheath%20fibers&rft.jtitle=Journal%20of%20polymer%20science%20(2020)&rft.au=Huang,%20Hsiu%E2%80%90Feng&rft.date=2024-09-15&rft.volume=62&rft.issue=18&rft.spage=4214&rft.epage=4227&rft.pages=4214-4227&rft.issn=2642-4150&rft.eissn=2642-4169&rft_id=info:doi/10.1002/pol.20240299&rft_dat=%3Cproquest_cross%3E3119001179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119001179&rft_id=info:pmid/&rfr_iscdi=true