Effects of hard and soft confinement on crystal polymorphism and crystal development in electrospun core‐sheath fibers
This study employs coaxial electrospinning to fabricate core‐sheath fibers composed of crystalline poly(L‐lactide) (PLLA) in the core and amorphous polystyrene (PS) in the sheath. The fibers undergo cold crystallization at temperatures either below (hard confinement) or above (soft confinement) the...
Gespeichert in:
Veröffentlicht in: | Journal of polymer science (2020) 2024-09, Vol.62 (18), p.4214-4227 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4227 |
---|---|
container_issue | 18 |
container_start_page | 4214 |
container_title | Journal of polymer science (2020) |
container_volume | 62 |
creator | Huang, Hsiu‐Feng Tsai, Yi‐Hsin Lo, Chieh‐Tsung |
description | This study employs coaxial electrospinning to fabricate core‐sheath fibers composed of crystalline poly(L‐lactide) (PLLA) in the core and amorphous polystyrene (PS) in the sheath. The fibers undergo cold crystallization at temperatures either below (hard confinement) or above (soft confinement) the glass transition temperature of PS. These conditions are employed to investigate the crystallization behavior of PLLA under multiple confinement types. The electrospinning of PLLA fibers results in the development of coexisting α‐ and α′‐form crystals. The coaxial electrospinning process enhances the extent of chain stretching of PLLA through the PS solution in the outer layer, thereby promoting the close packing of PLLA chains and facilitating the formation of α crystals. Crystallization within soft confinement enables PLLA chains to relax, leading to an increased population of α crystals; this phenomenon is not observed in electrospun single PLLA fibers. A comparison of the crystal parameters in core‐sheath and single PLLA fibers reveals that the crystallite size and the degree of crystallinity are considerably higher in unconfined single PLLA fibers than in confined core‐sheath fibers. The encapsulation of PLLA into the fiber core strongly inhibits the chain movement of PLLA, resulting in a decrease in PLLA crystallizability. |
doi_str_mv | 10.1002/pol.20240299 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119001179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119001179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1948-3dbed57872b0d97dcaca9ab3427e28d588515102acac43443d3837537e55170a3</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhi0EElXpjQewxJUUr1mOVVUWqVI5wNlyvCipkjjYKZAbj8Az8iSYlnLkNKOZb-af-QG4xGiOESI3vWvmBBGGSFGcgAlJGUkYTovTv5yjczALYYsiTnnKUDoB7ytrjRoCdBZW0msoOw2DswNUrrN1Z1rTDdB1UPkxDLKBUWZsne-rOrR7-NjQ5tU0rt_zdQdNE9d6F_pdnHXefH18hsrIoYK2Lo0PF-DMyiaY2W-cgufb1dPyPllv7h6Wi3WicMHyhOrSaJ7lGSmRLjKtpJKFLCkjmSG55nnOMceIxLJilDGqaU4zTjPDOc6QpFNwddjbe_eyM2EQW7fzXZQUFOMCIYyzIlLXB0rFk4M3VvS-bqUfBUbix14R_xZHeyNOD_hb3ZjxX1Y8btYLignK6TfHpX-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119001179</pqid></control><display><type>article</type><title>Effects of hard and soft confinement on crystal polymorphism and crystal development in electrospun core‐sheath fibers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Hsiu‐Feng ; Tsai, Yi‐Hsin ; Lo, Chieh‐Tsung</creator><creatorcontrib>Huang, Hsiu‐Feng ; Tsai, Yi‐Hsin ; Lo, Chieh‐Tsung</creatorcontrib><description>This study employs coaxial electrospinning to fabricate core‐sheath fibers composed of crystalline poly(L‐lactide) (PLLA) in the core and amorphous polystyrene (PS) in the sheath. The fibers undergo cold crystallization at temperatures either below (hard confinement) or above (soft confinement) the glass transition temperature of PS. These conditions are employed to investigate the crystallization behavior of PLLA under multiple confinement types. The electrospinning of PLLA fibers results in the development of coexisting α‐ and α′‐form crystals. The coaxial electrospinning process enhances the extent of chain stretching of PLLA through the PS solution in the outer layer, thereby promoting the close packing of PLLA chains and facilitating the formation of α crystals. Crystallization within soft confinement enables PLLA chains to relax, leading to an increased population of α crystals; this phenomenon is not observed in electrospun single PLLA fibers. A comparison of the crystal parameters in core‐sheath and single PLLA fibers reveals that the crystallite size and the degree of crystallinity are considerably higher in unconfined single PLLA fibers than in confined core‐sheath fibers. The encapsulation of PLLA into the fiber core strongly inhibits the chain movement of PLLA, resulting in a decrease in PLLA crystallizability.</description><identifier>ISSN: 2642-4150</identifier><identifier>EISSN: 2642-4169</identifier><identifier>DOI: 10.1002/pol.20240299</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Cold crystallization ; Confinement ; core‐sheath fibers ; Crystallites ; Crystallization ; Crystals ; Degree of crystallinity ; Electrospinning ; Fibers ; Glass transition temperature ; Polymorphism ; Polystyrene resins ; Sheaths ; Stretching</subject><ispartof>Journal of polymer science (2020), 2024-09, Vol.62 (18), p.4214-4227</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1948-3dbed57872b0d97dcaca9ab3427e28d588515102acac43443d3837537e55170a3</cites><orcidid>0000-0002-5031-1945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpol.20240299$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpol.20240299$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Huang, Hsiu‐Feng</creatorcontrib><creatorcontrib>Tsai, Yi‐Hsin</creatorcontrib><creatorcontrib>Lo, Chieh‐Tsung</creatorcontrib><title>Effects of hard and soft confinement on crystal polymorphism and crystal development in electrospun core‐sheath fibers</title><title>Journal of polymer science (2020)</title><description>This study employs coaxial electrospinning to fabricate core‐sheath fibers composed of crystalline poly(L‐lactide) (PLLA) in the core and amorphous polystyrene (PS) in the sheath. The fibers undergo cold crystallization at temperatures either below (hard confinement) or above (soft confinement) the glass transition temperature of PS. These conditions are employed to investigate the crystallization behavior of PLLA under multiple confinement types. The electrospinning of PLLA fibers results in the development of coexisting α‐ and α′‐form crystals. The coaxial electrospinning process enhances the extent of chain stretching of PLLA through the PS solution in the outer layer, thereby promoting the close packing of PLLA chains and facilitating the formation of α crystals. Crystallization within soft confinement enables PLLA chains to relax, leading to an increased population of α crystals; this phenomenon is not observed in electrospun single PLLA fibers. A comparison of the crystal parameters in core‐sheath and single PLLA fibers reveals that the crystallite size and the degree of crystallinity are considerably higher in unconfined single PLLA fibers than in confined core‐sheath fibers. The encapsulation of PLLA into the fiber core strongly inhibits the chain movement of PLLA, resulting in a decrease in PLLA crystallizability.</description><subject>Cold crystallization</subject><subject>Confinement</subject><subject>core‐sheath fibers</subject><subject>Crystallites</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Degree of crystallinity</subject><subject>Electrospinning</subject><subject>Fibers</subject><subject>Glass transition temperature</subject><subject>Polymorphism</subject><subject>Polystyrene resins</subject><subject>Sheaths</subject><subject>Stretching</subject><issn>2642-4150</issn><issn>2642-4169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAQhi0EElXpjQewxJUUr1mOVVUWqVI5wNlyvCipkjjYKZAbj8Az8iSYlnLkNKOZb-af-QG4xGiOESI3vWvmBBGGSFGcgAlJGUkYTovTv5yjczALYYsiTnnKUDoB7ytrjRoCdBZW0msoOw2DswNUrrN1Z1rTDdB1UPkxDLKBUWZsne-rOrR7-NjQ5tU0rt_zdQdNE9d6F_pdnHXefH18hsrIoYK2Lo0PF-DMyiaY2W-cgufb1dPyPllv7h6Wi3WicMHyhOrSaJ7lGSmRLjKtpJKFLCkjmSG55nnOMceIxLJilDGqaU4zTjPDOc6QpFNwddjbe_eyM2EQW7fzXZQUFOMCIYyzIlLXB0rFk4M3VvS-bqUfBUbix14R_xZHeyNOD_hb3ZjxX1Y8btYLignK6TfHpX-E</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Huang, Hsiu‐Feng</creator><creator>Tsai, Yi‐Hsin</creator><creator>Lo, Chieh‐Tsung</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5031-1945</orcidid></search><sort><creationdate>20240915</creationdate><title>Effects of hard and soft confinement on crystal polymorphism and crystal development in electrospun core‐sheath fibers</title><author>Huang, Hsiu‐Feng ; Tsai, Yi‐Hsin ; Lo, Chieh‐Tsung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1948-3dbed57872b0d97dcaca9ab3427e28d588515102acac43443d3837537e55170a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cold crystallization</topic><topic>Confinement</topic><topic>core‐sheath fibers</topic><topic>Crystallites</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Degree of crystallinity</topic><topic>Electrospinning</topic><topic>Fibers</topic><topic>Glass transition temperature</topic><topic>Polymorphism</topic><topic>Polystyrene resins</topic><topic>Sheaths</topic><topic>Stretching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hsiu‐Feng</creatorcontrib><creatorcontrib>Tsai, Yi‐Hsin</creatorcontrib><creatorcontrib>Lo, Chieh‐Tsung</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science (2020)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hsiu‐Feng</au><au>Tsai, Yi‐Hsin</au><au>Lo, Chieh‐Tsung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of hard and soft confinement on crystal polymorphism and crystal development in electrospun core‐sheath fibers</atitle><jtitle>Journal of polymer science (2020)</jtitle><date>2024-09-15</date><risdate>2024</risdate><volume>62</volume><issue>18</issue><spage>4214</spage><epage>4227</epage><pages>4214-4227</pages><issn>2642-4150</issn><eissn>2642-4169</eissn><abstract>This study employs coaxial electrospinning to fabricate core‐sheath fibers composed of crystalline poly(L‐lactide) (PLLA) in the core and amorphous polystyrene (PS) in the sheath. The fibers undergo cold crystallization at temperatures either below (hard confinement) or above (soft confinement) the glass transition temperature of PS. These conditions are employed to investigate the crystallization behavior of PLLA under multiple confinement types. The electrospinning of PLLA fibers results in the development of coexisting α‐ and α′‐form crystals. The coaxial electrospinning process enhances the extent of chain stretching of PLLA through the PS solution in the outer layer, thereby promoting the close packing of PLLA chains and facilitating the formation of α crystals. Crystallization within soft confinement enables PLLA chains to relax, leading to an increased population of α crystals; this phenomenon is not observed in electrospun single PLLA fibers. A comparison of the crystal parameters in core‐sheath and single PLLA fibers reveals that the crystallite size and the degree of crystallinity are considerably higher in unconfined single PLLA fibers than in confined core‐sheath fibers. The encapsulation of PLLA into the fiber core strongly inhibits the chain movement of PLLA, resulting in a decrease in PLLA crystallizability.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pol.20240299</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5031-1945</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2642-4150 |
ispartof | Journal of polymer science (2020), 2024-09, Vol.62 (18), p.4214-4227 |
issn | 2642-4150 2642-4169 |
language | eng |
recordid | cdi_proquest_journals_3119001179 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Cold crystallization Confinement core‐sheath fibers Crystallites Crystallization Crystals Degree of crystallinity Electrospinning Fibers Glass transition temperature Polymorphism Polystyrene resins Sheaths Stretching |
title | Effects of hard and soft confinement on crystal polymorphism and crystal development in electrospun core‐sheath fibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20hard%20and%20soft%20confinement%20on%20crystal%20polymorphism%20and%20crystal%20development%20in%20electrospun%20core%E2%80%90sheath%20fibers&rft.jtitle=Journal%20of%20polymer%20science%20(2020)&rft.au=Huang,%20Hsiu%E2%80%90Feng&rft.date=2024-09-15&rft.volume=62&rft.issue=18&rft.spage=4214&rft.epage=4227&rft.pages=4214-4227&rft.issn=2642-4150&rft.eissn=2642-4169&rft_id=info:doi/10.1002/pol.20240299&rft_dat=%3Cproquest_cross%3E3119001179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119001179&rft_id=info:pmid/&rfr_iscdi=true |