High tough, self‐adhesive, conductive double network hydrogel for flexible strain sensors
The application of adhesive conductive hydrogel materials in flexible sensors has been extensively studied. However, existing adhesive hydrogel sensor materials have problems such as poor adhesion, low conductivity, and difficulty in balancing mechanical and adhesive properties, which limit their pr...
Gespeichert in:
Veröffentlicht in: | Journal of polymer science (2020) 2024-09, Vol.62 (18), p.4165-4176 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4176 |
---|---|
container_issue | 18 |
container_start_page | 4165 |
container_title | Journal of polymer science (2020) |
container_volume | 62 |
creator | Li, Feihong Liu, Peng Li, Xiangyu Bi, Yuanyuan Chen, Changxiu Zhang, Hanzhi Li, Yuanhang Yu, Yunwu Gu, Yaxin Tang, Ning |
description | The application of adhesive conductive hydrogel materials in flexible sensors has been extensively studied. However, existing adhesive hydrogel sensor materials have problems such as poor adhesion, low conductivity, and difficulty in balancing mechanical and adhesive properties, which limit their practical applications. In this study, we propose a simple and economical method to fabricate double‐network hydrogels for flexible strain sensors by dissolving acrylamide (AM), chitosan (CS), polyethylene glycol (PEG) and gelatin (Gel) in a mixed solvent of deionized water and a food‐grade phosphate. The prepared AM/CS/PEG/Gel (ACPG) hydrogel exhibits excellent toughness (maximum stress of 154 kPa, maximum elongation of 2256%), self‐adhesiveness (maximum adhesion strength to wood of 17.2 kPa), and high conductivity (2.33 S/m). Compared with similar adhesive hydrogels, the conductivity of ACPG hydrogel is significantly improved. Therefore, ACPG hydrogel can be used as an ideal material for flexible sensors, and has broad application potential in wearable devices and human‐computer interaction. |
doi_str_mv | 10.1002/pol.20240234 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119000344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119000344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2641-aed5866257faac5798c80d839ba4801fbff2f3d08fde6754d83262f867eab1fc3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EElXpxgNYYm2K_-IkY1UBRapUBpgYLCe2mxQTFzuh7cYj8Iw8Ca4KjEz3SOfTufceAC4xmmCEyPXG2QlBhCFC2QkYEM5IwjAvTv90is7BKIQ1ijhNOUN8AJ7nzaqGnetX9RgGbc3Xx6dUtQ7Nux7DyrWqr7qooXJ9aTVsdbd1_gXWe-XdSltonIfG6l1zcEPnZdPGnDY4Hy7AmZE26NHPHIKn25vH2TxZLO_uZ9NFUsXDcCK1SnPOSZoZKas0K_IqRyqnRSlZjrApjSGGKpQbpXmWsmgRTkzOMy1LbCo6BFfH3I13b70OnVi73rdxpaAYF_Fdylikxkeq8i4Er43Y-OZV-r3ASBwaFLFB8dtgxOkR3zZW7_9lxcNyMaWYIEy_Ab44dQ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119000344</pqid></control><display><type>article</type><title>High tough, self‐adhesive, conductive double network hydrogel for flexible strain sensors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Feihong ; Liu, Peng ; Li, Xiangyu ; Bi, Yuanyuan ; Chen, Changxiu ; Zhang, Hanzhi ; Li, Yuanhang ; Yu, Yunwu ; Gu, Yaxin ; Tang, Ning</creator><creatorcontrib>Li, Feihong ; Liu, Peng ; Li, Xiangyu ; Bi, Yuanyuan ; Chen, Changxiu ; Zhang, Hanzhi ; Li, Yuanhang ; Yu, Yunwu ; Gu, Yaxin ; Tang, Ning</creatorcontrib><description>The application of adhesive conductive hydrogel materials in flexible sensors has been extensively studied. However, existing adhesive hydrogel sensor materials have problems such as poor adhesion, low conductivity, and difficulty in balancing mechanical and adhesive properties, which limit their practical applications. In this study, we propose a simple and economical method to fabricate double‐network hydrogels for flexible strain sensors by dissolving acrylamide (AM), chitosan (CS), polyethylene glycol (PEG) and gelatin (Gel) in a mixed solvent of deionized water and a food‐grade phosphate. The prepared AM/CS/PEG/Gel (ACPG) hydrogel exhibits excellent toughness (maximum stress of 154 kPa, maximum elongation of 2256%), self‐adhesiveness (maximum adhesion strength to wood of 17.2 kPa), and high conductivity (2.33 S/m). Compared with similar adhesive hydrogels, the conductivity of ACPG hydrogel is significantly improved. Therefore, ACPG hydrogel can be used as an ideal material for flexible sensors, and has broad application potential in wearable devices and human‐computer interaction.</description><identifier>ISSN: 2642-4150</identifier><identifier>EISSN: 2642-4169</identifier><identifier>DOI: 10.1002/pol.20240234</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Acrylamide ; Adhesive strength ; Chitosan ; Deionization ; double network ; Flexible components ; flexible strain sensors ; Gelatin ; hydrogel ; Hydrogels ; Low conductivity ; Polyethylene glycol ; Sensors ; Strain ; Wearable technology</subject><ispartof>Journal of polymer science (2020), 2024-09, Vol.62 (18), p.4165-4176</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2641-aed5866257faac5798c80d839ba4801fbff2f3d08fde6754d83262f867eab1fc3</cites><orcidid>0000-0003-1726-4857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpol.20240234$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpol.20240234$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Feihong</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Li, Xiangyu</creatorcontrib><creatorcontrib>Bi, Yuanyuan</creatorcontrib><creatorcontrib>Chen, Changxiu</creatorcontrib><creatorcontrib>Zhang, Hanzhi</creatorcontrib><creatorcontrib>Li, Yuanhang</creatorcontrib><creatorcontrib>Yu, Yunwu</creatorcontrib><creatorcontrib>Gu, Yaxin</creatorcontrib><creatorcontrib>Tang, Ning</creatorcontrib><title>High tough, self‐adhesive, conductive double network hydrogel for flexible strain sensors</title><title>Journal of polymer science (2020)</title><description>The application of adhesive conductive hydrogel materials in flexible sensors has been extensively studied. However, existing adhesive hydrogel sensor materials have problems such as poor adhesion, low conductivity, and difficulty in balancing mechanical and adhesive properties, which limit their practical applications. In this study, we propose a simple and economical method to fabricate double‐network hydrogels for flexible strain sensors by dissolving acrylamide (AM), chitosan (CS), polyethylene glycol (PEG) and gelatin (Gel) in a mixed solvent of deionized water and a food‐grade phosphate. The prepared AM/CS/PEG/Gel (ACPG) hydrogel exhibits excellent toughness (maximum stress of 154 kPa, maximum elongation of 2256%), self‐adhesiveness (maximum adhesion strength to wood of 17.2 kPa), and high conductivity (2.33 S/m). Compared with similar adhesive hydrogels, the conductivity of ACPG hydrogel is significantly improved. Therefore, ACPG hydrogel can be used as an ideal material for flexible sensors, and has broad application potential in wearable devices and human‐computer interaction.</description><subject>Acrylamide</subject><subject>Adhesive strength</subject><subject>Chitosan</subject><subject>Deionization</subject><subject>double network</subject><subject>Flexible components</subject><subject>flexible strain sensors</subject><subject>Gelatin</subject><subject>hydrogel</subject><subject>Hydrogels</subject><subject>Low conductivity</subject><subject>Polyethylene glycol</subject><subject>Sensors</subject><subject>Strain</subject><subject>Wearable technology</subject><issn>2642-4150</issn><issn>2642-4169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EElXpxgNYYm2K_-IkY1UBRapUBpgYLCe2mxQTFzuh7cYj8Iw8Ca4KjEz3SOfTufceAC4xmmCEyPXG2QlBhCFC2QkYEM5IwjAvTv90is7BKIQ1ijhNOUN8AJ7nzaqGnetX9RgGbc3Xx6dUtQ7Nux7DyrWqr7qooXJ9aTVsdbd1_gXWe-XdSltonIfG6l1zcEPnZdPGnDY4Hy7AmZE26NHPHIKn25vH2TxZLO_uZ9NFUsXDcCK1SnPOSZoZKas0K_IqRyqnRSlZjrApjSGGKpQbpXmWsmgRTkzOMy1LbCo6BFfH3I13b70OnVi73rdxpaAYF_Fdylikxkeq8i4Er43Y-OZV-r3ASBwaFLFB8dtgxOkR3zZW7_9lxcNyMaWYIEy_Ab44dQ4</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Li, Feihong</creator><creator>Liu, Peng</creator><creator>Li, Xiangyu</creator><creator>Bi, Yuanyuan</creator><creator>Chen, Changxiu</creator><creator>Zhang, Hanzhi</creator><creator>Li, Yuanhang</creator><creator>Yu, Yunwu</creator><creator>Gu, Yaxin</creator><creator>Tang, Ning</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1726-4857</orcidid></search><sort><creationdate>20240915</creationdate><title>High tough, self‐adhesive, conductive double network hydrogel for flexible strain sensors</title><author>Li, Feihong ; Liu, Peng ; Li, Xiangyu ; Bi, Yuanyuan ; Chen, Changxiu ; Zhang, Hanzhi ; Li, Yuanhang ; Yu, Yunwu ; Gu, Yaxin ; Tang, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2641-aed5866257faac5798c80d839ba4801fbff2f3d08fde6754d83262f867eab1fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acrylamide</topic><topic>Adhesive strength</topic><topic>Chitosan</topic><topic>Deionization</topic><topic>double network</topic><topic>Flexible components</topic><topic>flexible strain sensors</topic><topic>Gelatin</topic><topic>hydrogel</topic><topic>Hydrogels</topic><topic>Low conductivity</topic><topic>Polyethylene glycol</topic><topic>Sensors</topic><topic>Strain</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Feihong</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Li, Xiangyu</creatorcontrib><creatorcontrib>Bi, Yuanyuan</creatorcontrib><creatorcontrib>Chen, Changxiu</creatorcontrib><creatorcontrib>Zhang, Hanzhi</creatorcontrib><creatorcontrib>Li, Yuanhang</creatorcontrib><creatorcontrib>Yu, Yunwu</creatorcontrib><creatorcontrib>Gu, Yaxin</creatorcontrib><creatorcontrib>Tang, Ning</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science (2020)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Feihong</au><au>Liu, Peng</au><au>Li, Xiangyu</au><au>Bi, Yuanyuan</au><au>Chen, Changxiu</au><au>Zhang, Hanzhi</au><au>Li, Yuanhang</au><au>Yu, Yunwu</au><au>Gu, Yaxin</au><au>Tang, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High tough, self‐adhesive, conductive double network hydrogel for flexible strain sensors</atitle><jtitle>Journal of polymer science (2020)</jtitle><date>2024-09-15</date><risdate>2024</risdate><volume>62</volume><issue>18</issue><spage>4165</spage><epage>4176</epage><pages>4165-4176</pages><issn>2642-4150</issn><eissn>2642-4169</eissn><abstract>The application of adhesive conductive hydrogel materials in flexible sensors has been extensively studied. However, existing adhesive hydrogel sensor materials have problems such as poor adhesion, low conductivity, and difficulty in balancing mechanical and adhesive properties, which limit their practical applications. In this study, we propose a simple and economical method to fabricate double‐network hydrogels for flexible strain sensors by dissolving acrylamide (AM), chitosan (CS), polyethylene glycol (PEG) and gelatin (Gel) in a mixed solvent of deionized water and a food‐grade phosphate. The prepared AM/CS/PEG/Gel (ACPG) hydrogel exhibits excellent toughness (maximum stress of 154 kPa, maximum elongation of 2256%), self‐adhesiveness (maximum adhesion strength to wood of 17.2 kPa), and high conductivity (2.33 S/m). Compared with similar adhesive hydrogels, the conductivity of ACPG hydrogel is significantly improved. Therefore, ACPG hydrogel can be used as an ideal material for flexible sensors, and has broad application potential in wearable devices and human‐computer interaction.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pol.20240234</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1726-4857</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2642-4150 |
ispartof | Journal of polymer science (2020), 2024-09, Vol.62 (18), p.4165-4176 |
issn | 2642-4150 2642-4169 |
language | eng |
recordid | cdi_proquest_journals_3119000344 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acrylamide Adhesive strength Chitosan Deionization double network Flexible components flexible strain sensors Gelatin hydrogel Hydrogels Low conductivity Polyethylene glycol Sensors Strain Wearable technology |
title | High tough, self‐adhesive, conductive double network hydrogel for flexible strain sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20tough,%20self%E2%80%90adhesive,%20conductive%20double%20network%20hydrogel%20for%20flexible%20strain%20sensors&rft.jtitle=Journal%20of%20polymer%20science%20(2020)&rft.au=Li,%20Feihong&rft.date=2024-09-15&rft.volume=62&rft.issue=18&rft.spage=4165&rft.epage=4176&rft.pages=4165-4176&rft.issn=2642-4150&rft.eissn=2642-4169&rft_id=info:doi/10.1002/pol.20240234&rft_dat=%3Cproquest_cross%3E3119000344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119000344&rft_id=info:pmid/&rfr_iscdi=true |