High tough, self‐adhesive, conductive double network hydrogel for flexible strain sensors

The application of adhesive conductive hydrogel materials in flexible sensors has been extensively studied. However, existing adhesive hydrogel sensor materials have problems such as poor adhesion, low conductivity, and difficulty in balancing mechanical and adhesive properties, which limit their pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science (2020) 2024-09, Vol.62 (18), p.4165-4176
Hauptverfasser: Li, Feihong, Liu, Peng, Li, Xiangyu, Bi, Yuanyuan, Chen, Changxiu, Zhang, Hanzhi, Li, Yuanhang, Yu, Yunwu, Gu, Yaxin, Tang, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4176
container_issue 18
container_start_page 4165
container_title Journal of polymer science (2020)
container_volume 62
creator Li, Feihong
Liu, Peng
Li, Xiangyu
Bi, Yuanyuan
Chen, Changxiu
Zhang, Hanzhi
Li, Yuanhang
Yu, Yunwu
Gu, Yaxin
Tang, Ning
description The application of adhesive conductive hydrogel materials in flexible sensors has been extensively studied. However, existing adhesive hydrogel sensor materials have problems such as poor adhesion, low conductivity, and difficulty in balancing mechanical and adhesive properties, which limit their practical applications. In this study, we propose a simple and economical method to fabricate double‐network hydrogels for flexible strain sensors by dissolving acrylamide (AM), chitosan (CS), polyethylene glycol (PEG) and gelatin (Gel) in a mixed solvent of deionized water and a food‐grade phosphate. The prepared AM/CS/PEG/Gel (ACPG) hydrogel exhibits excellent toughness (maximum stress of 154 kPa, maximum elongation of 2256%), self‐adhesiveness (maximum adhesion strength to wood of 17.2 kPa), and high conductivity (2.33 S/m). Compared with similar adhesive hydrogels, the conductivity of ACPG hydrogel is significantly improved. Therefore, ACPG hydrogel can be used as an ideal material for flexible sensors, and has broad application potential in wearable devices and human‐computer interaction.
doi_str_mv 10.1002/pol.20240234
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119000344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119000344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2641-aed5866257faac5798c80d839ba4801fbff2f3d08fde6754d83262f867eab1fc3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EElXpxgNYYm2K_-IkY1UBRapUBpgYLCe2mxQTFzuh7cYj8Iw8Ca4KjEz3SOfTufceAC4xmmCEyPXG2QlBhCFC2QkYEM5IwjAvTv90is7BKIQ1ijhNOUN8AJ7nzaqGnetX9RgGbc3Xx6dUtQ7Nux7DyrWqr7qooXJ9aTVsdbd1_gXWe-XdSltonIfG6l1zcEPnZdPGnDY4Hy7AmZE26NHPHIKn25vH2TxZLO_uZ9NFUsXDcCK1SnPOSZoZKas0K_IqRyqnRSlZjrApjSGGKpQbpXmWsmgRTkzOMy1LbCo6BFfH3I13b70OnVi73rdxpaAYF_Fdylikxkeq8i4Er43Y-OZV-r3ASBwaFLFB8dtgxOkR3zZW7_9lxcNyMaWYIEy_Ab44dQ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119000344</pqid></control><display><type>article</type><title>High tough, self‐adhesive, conductive double network hydrogel for flexible strain sensors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Feihong ; Liu, Peng ; Li, Xiangyu ; Bi, Yuanyuan ; Chen, Changxiu ; Zhang, Hanzhi ; Li, Yuanhang ; Yu, Yunwu ; Gu, Yaxin ; Tang, Ning</creator><creatorcontrib>Li, Feihong ; Liu, Peng ; Li, Xiangyu ; Bi, Yuanyuan ; Chen, Changxiu ; Zhang, Hanzhi ; Li, Yuanhang ; Yu, Yunwu ; Gu, Yaxin ; Tang, Ning</creatorcontrib><description>The application of adhesive conductive hydrogel materials in flexible sensors has been extensively studied. However, existing adhesive hydrogel sensor materials have problems such as poor adhesion, low conductivity, and difficulty in balancing mechanical and adhesive properties, which limit their practical applications. In this study, we propose a simple and economical method to fabricate double‐network hydrogels for flexible strain sensors by dissolving acrylamide (AM), chitosan (CS), polyethylene glycol (PEG) and gelatin (Gel) in a mixed solvent of deionized water and a food‐grade phosphate. The prepared AM/CS/PEG/Gel (ACPG) hydrogel exhibits excellent toughness (maximum stress of 154 kPa, maximum elongation of 2256%), self‐adhesiveness (maximum adhesion strength to wood of 17.2 kPa), and high conductivity (2.33 S/m). Compared with similar adhesive hydrogels, the conductivity of ACPG hydrogel is significantly improved. Therefore, ACPG hydrogel can be used as an ideal material for flexible sensors, and has broad application potential in wearable devices and human‐computer interaction.</description><identifier>ISSN: 2642-4150</identifier><identifier>EISSN: 2642-4169</identifier><identifier>DOI: 10.1002/pol.20240234</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Acrylamide ; Adhesive strength ; Chitosan ; Deionization ; double network ; Flexible components ; flexible strain sensors ; Gelatin ; hydrogel ; Hydrogels ; Low conductivity ; Polyethylene glycol ; Sensors ; Strain ; Wearable technology</subject><ispartof>Journal of polymer science (2020), 2024-09, Vol.62 (18), p.4165-4176</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2641-aed5866257faac5798c80d839ba4801fbff2f3d08fde6754d83262f867eab1fc3</cites><orcidid>0000-0003-1726-4857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpol.20240234$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpol.20240234$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Feihong</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Li, Xiangyu</creatorcontrib><creatorcontrib>Bi, Yuanyuan</creatorcontrib><creatorcontrib>Chen, Changxiu</creatorcontrib><creatorcontrib>Zhang, Hanzhi</creatorcontrib><creatorcontrib>Li, Yuanhang</creatorcontrib><creatorcontrib>Yu, Yunwu</creatorcontrib><creatorcontrib>Gu, Yaxin</creatorcontrib><creatorcontrib>Tang, Ning</creatorcontrib><title>High tough, self‐adhesive, conductive double network hydrogel for flexible strain sensors</title><title>Journal of polymer science (2020)</title><description>The application of adhesive conductive hydrogel materials in flexible sensors has been extensively studied. However, existing adhesive hydrogel sensor materials have problems such as poor adhesion, low conductivity, and difficulty in balancing mechanical and adhesive properties, which limit their practical applications. In this study, we propose a simple and economical method to fabricate double‐network hydrogels for flexible strain sensors by dissolving acrylamide (AM), chitosan (CS), polyethylene glycol (PEG) and gelatin (Gel) in a mixed solvent of deionized water and a food‐grade phosphate. The prepared AM/CS/PEG/Gel (ACPG) hydrogel exhibits excellent toughness (maximum stress of 154 kPa, maximum elongation of 2256%), self‐adhesiveness (maximum adhesion strength to wood of 17.2 kPa), and high conductivity (2.33 S/m). Compared with similar adhesive hydrogels, the conductivity of ACPG hydrogel is significantly improved. Therefore, ACPG hydrogel can be used as an ideal material for flexible sensors, and has broad application potential in wearable devices and human‐computer interaction.</description><subject>Acrylamide</subject><subject>Adhesive strength</subject><subject>Chitosan</subject><subject>Deionization</subject><subject>double network</subject><subject>Flexible components</subject><subject>flexible strain sensors</subject><subject>Gelatin</subject><subject>hydrogel</subject><subject>Hydrogels</subject><subject>Low conductivity</subject><subject>Polyethylene glycol</subject><subject>Sensors</subject><subject>Strain</subject><subject>Wearable technology</subject><issn>2642-4150</issn><issn>2642-4169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EElXpxgNYYm2K_-IkY1UBRapUBpgYLCe2mxQTFzuh7cYj8Iw8Ca4KjEz3SOfTufceAC4xmmCEyPXG2QlBhCFC2QkYEM5IwjAvTv90is7BKIQ1ijhNOUN8AJ7nzaqGnetX9RgGbc3Xx6dUtQ7Nux7DyrWqr7qooXJ9aTVsdbd1_gXWe-XdSltonIfG6l1zcEPnZdPGnDY4Hy7AmZE26NHPHIKn25vH2TxZLO_uZ9NFUsXDcCK1SnPOSZoZKas0K_IqRyqnRSlZjrApjSGGKpQbpXmWsmgRTkzOMy1LbCo6BFfH3I13b70OnVi73rdxpaAYF_Fdylikxkeq8i4Er43Y-OZV-r3ASBwaFLFB8dtgxOkR3zZW7_9lxcNyMaWYIEy_Ab44dQ4</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Li, Feihong</creator><creator>Liu, Peng</creator><creator>Li, Xiangyu</creator><creator>Bi, Yuanyuan</creator><creator>Chen, Changxiu</creator><creator>Zhang, Hanzhi</creator><creator>Li, Yuanhang</creator><creator>Yu, Yunwu</creator><creator>Gu, Yaxin</creator><creator>Tang, Ning</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1726-4857</orcidid></search><sort><creationdate>20240915</creationdate><title>High tough, self‐adhesive, conductive double network hydrogel for flexible strain sensors</title><author>Li, Feihong ; Liu, Peng ; Li, Xiangyu ; Bi, Yuanyuan ; Chen, Changxiu ; Zhang, Hanzhi ; Li, Yuanhang ; Yu, Yunwu ; Gu, Yaxin ; Tang, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2641-aed5866257faac5798c80d839ba4801fbff2f3d08fde6754d83262f867eab1fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acrylamide</topic><topic>Adhesive strength</topic><topic>Chitosan</topic><topic>Deionization</topic><topic>double network</topic><topic>Flexible components</topic><topic>flexible strain sensors</topic><topic>Gelatin</topic><topic>hydrogel</topic><topic>Hydrogels</topic><topic>Low conductivity</topic><topic>Polyethylene glycol</topic><topic>Sensors</topic><topic>Strain</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Feihong</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Li, Xiangyu</creatorcontrib><creatorcontrib>Bi, Yuanyuan</creatorcontrib><creatorcontrib>Chen, Changxiu</creatorcontrib><creatorcontrib>Zhang, Hanzhi</creatorcontrib><creatorcontrib>Li, Yuanhang</creatorcontrib><creatorcontrib>Yu, Yunwu</creatorcontrib><creatorcontrib>Gu, Yaxin</creatorcontrib><creatorcontrib>Tang, Ning</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science (2020)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Feihong</au><au>Liu, Peng</au><au>Li, Xiangyu</au><au>Bi, Yuanyuan</au><au>Chen, Changxiu</au><au>Zhang, Hanzhi</au><au>Li, Yuanhang</au><au>Yu, Yunwu</au><au>Gu, Yaxin</au><au>Tang, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High tough, self‐adhesive, conductive double network hydrogel for flexible strain sensors</atitle><jtitle>Journal of polymer science (2020)</jtitle><date>2024-09-15</date><risdate>2024</risdate><volume>62</volume><issue>18</issue><spage>4165</spage><epage>4176</epage><pages>4165-4176</pages><issn>2642-4150</issn><eissn>2642-4169</eissn><abstract>The application of adhesive conductive hydrogel materials in flexible sensors has been extensively studied. However, existing adhesive hydrogel sensor materials have problems such as poor adhesion, low conductivity, and difficulty in balancing mechanical and adhesive properties, which limit their practical applications. In this study, we propose a simple and economical method to fabricate double‐network hydrogels for flexible strain sensors by dissolving acrylamide (AM), chitosan (CS), polyethylene glycol (PEG) and gelatin (Gel) in a mixed solvent of deionized water and a food‐grade phosphate. The prepared AM/CS/PEG/Gel (ACPG) hydrogel exhibits excellent toughness (maximum stress of 154 kPa, maximum elongation of 2256%), self‐adhesiveness (maximum adhesion strength to wood of 17.2 kPa), and high conductivity (2.33 S/m). Compared with similar adhesive hydrogels, the conductivity of ACPG hydrogel is significantly improved. Therefore, ACPG hydrogel can be used as an ideal material for flexible sensors, and has broad application potential in wearable devices and human‐computer interaction.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pol.20240234</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1726-4857</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2642-4150
ispartof Journal of polymer science (2020), 2024-09, Vol.62 (18), p.4165-4176
issn 2642-4150
2642-4169
language eng
recordid cdi_proquest_journals_3119000344
source Wiley Online Library Journals Frontfile Complete
subjects Acrylamide
Adhesive strength
Chitosan
Deionization
double network
Flexible components
flexible strain sensors
Gelatin
hydrogel
Hydrogels
Low conductivity
Polyethylene glycol
Sensors
Strain
Wearable technology
title High tough, self‐adhesive, conductive double network hydrogel for flexible strain sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20tough,%20self%E2%80%90adhesive,%20conductive%20double%20network%20hydrogel%20for%20flexible%20strain%20sensors&rft.jtitle=Journal%20of%20polymer%20science%20(2020)&rft.au=Li,%20Feihong&rft.date=2024-09-15&rft.volume=62&rft.issue=18&rft.spage=4165&rft.epage=4176&rft.pages=4165-4176&rft.issn=2642-4150&rft.eissn=2642-4169&rft_id=info:doi/10.1002/pol.20240234&rft_dat=%3Cproquest_cross%3E3119000344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119000344&rft_id=info:pmid/&rfr_iscdi=true