Convergence of the Dirichlet-Neumann method for semilinear elliptic equations

The Dirichlet-Neumann method is a common domain decomposition method for nonoverlapping domain decomposition and the method has been studied extensively for linear elliptic equations. However, for nonlinear elliptic equations, there are only convergence results for some specific cases in one spatial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
1. Verfasser: Engström, Emil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Engström, Emil
description The Dirichlet-Neumann method is a common domain decomposition method for nonoverlapping domain decomposition and the method has been studied extensively for linear elliptic equations. However, for nonlinear elliptic equations, there are only convergence results for some specific cases in one spatial dimension. The aim of this manuscript is therefore to prove that the Dirichlet-Neumann method converges for a class of semilinear elliptic equations on Lipschitz continuous domains in two and three spatial dimensions. This is achieved by first proving a new result on the convergence of nonlinear iterations in Hilbert spaces and then applying this result to the Steklov-Poincaré formulation of the Dirichlet-Neumann method.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3118928641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118928641</sourcerecordid><originalsourceid>FETCH-proquest_journals_31189286413</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOHGxESivMNNnEloC4gzalx0cicNXqSk9EJ_fH4dfACnM3xnxRIhJc_qQogNS70f8zwX1UGUpUzYrSH7RvdC2yFQD2FAOGmnu8FgyO4YJ2UtTBgGekJPDjxO2miLygEao-egO8AlqqDJ-h1b98p4TH_dsv3l_Giu2exoiehDO1J09kut5Lw-iroquPzv-gDIJD5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118928641</pqid></control><display><type>article</type><title>Convergence of the Dirichlet-Neumann method for semilinear elliptic equations</title><source>Free E- Journals</source><creator>Engström, Emil</creator><creatorcontrib>Engström, Emil</creatorcontrib><description>The Dirichlet-Neumann method is a common domain decomposition method for nonoverlapping domain decomposition and the method has been studied extensively for linear elliptic equations. However, for nonlinear elliptic equations, there are only convergence results for some specific cases in one spatial dimension. The aim of this manuscript is therefore to prove that the Dirichlet-Neumann method converges for a class of semilinear elliptic equations on Lipschitz continuous domains in two and three spatial dimensions. This is achieved by first proving a new result on the convergence of nonlinear iterations in Hilbert spaces and then applying this result to the Steklov-Poincaré formulation of the Dirichlet-Neumann method.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Domain decomposition methods ; Elliptic functions ; Hilbert space</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Engström, Emil</creatorcontrib><title>Convergence of the Dirichlet-Neumann method for semilinear elliptic equations</title><title>arXiv.org</title><description>The Dirichlet-Neumann method is a common domain decomposition method for nonoverlapping domain decomposition and the method has been studied extensively for linear elliptic equations. However, for nonlinear elliptic equations, there are only convergence results for some specific cases in one spatial dimension. The aim of this manuscript is therefore to prove that the Dirichlet-Neumann method converges for a class of semilinear elliptic equations on Lipschitz continuous domains in two and three spatial dimensions. This is achieved by first proving a new result on the convergence of nonlinear iterations in Hilbert spaces and then applying this result to the Steklov-Poincaré formulation of the Dirichlet-Neumann method.</description><subject>Convergence</subject><subject>Domain decomposition methods</subject><subject>Elliptic functions</subject><subject>Hilbert space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0OgjAUQOHGxESivMNNnEloC4gzalx0cicNXqSk9EJ_fH4dfACnM3xnxRIhJc_qQogNS70f8zwX1UGUpUzYrSH7RvdC2yFQD2FAOGmnu8FgyO4YJ2UtTBgGekJPDjxO2miLygEao-egO8AlqqDJ-h1b98p4TH_dsv3l_Giu2exoiehDO1J09kut5Lw-iroquPzv-gDIJD5k</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>Engström, Emil</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241018</creationdate><title>Convergence of the Dirichlet-Neumann method for semilinear elliptic equations</title><author>Engström, Emil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31189286413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Domain decomposition methods</topic><topic>Elliptic functions</topic><topic>Hilbert space</topic><toplevel>online_resources</toplevel><creatorcontrib>Engström, Emil</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engström, Emil</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Convergence of the Dirichlet-Neumann method for semilinear elliptic equations</atitle><jtitle>arXiv.org</jtitle><date>2024-10-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The Dirichlet-Neumann method is a common domain decomposition method for nonoverlapping domain decomposition and the method has been studied extensively for linear elliptic equations. However, for nonlinear elliptic equations, there are only convergence results for some specific cases in one spatial dimension. The aim of this manuscript is therefore to prove that the Dirichlet-Neumann method converges for a class of semilinear elliptic equations on Lipschitz continuous domains in two and three spatial dimensions. This is achieved by first proving a new result on the convergence of nonlinear iterations in Hilbert spaces and then applying this result to the Steklov-Poincaré formulation of the Dirichlet-Neumann method.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3118928641
source Free E- Journals
subjects Convergence
Domain decomposition methods
Elliptic functions
Hilbert space
title Convergence of the Dirichlet-Neumann method for semilinear elliptic equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Convergence%20of%20the%20Dirichlet-Neumann%20method%20for%20semilinear%20elliptic%20equations&rft.jtitle=arXiv.org&rft.au=Engstr%C3%B6m,%20Emil&rft.date=2024-10-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3118928641%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118928641&rft_id=info:pmid/&rfr_iscdi=true