Convergence of the Dirichlet-Neumann method for semilinear elliptic equations
The Dirichlet-Neumann method is a common domain decomposition method for nonoverlapping domain decomposition and the method has been studied extensively for linear elliptic equations. However, for nonlinear elliptic equations, there are only convergence results for some specific cases in one spatial...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Engström, Emil |
description | The Dirichlet-Neumann method is a common domain decomposition method for nonoverlapping domain decomposition and the method has been studied extensively for linear elliptic equations. However, for nonlinear elliptic equations, there are only convergence results for some specific cases in one spatial dimension. The aim of this manuscript is therefore to prove that the Dirichlet-Neumann method converges for a class of semilinear elliptic equations on Lipschitz continuous domains in two and three spatial dimensions. This is achieved by first proving a new result on the convergence of nonlinear iterations in Hilbert spaces and then applying this result to the Steklov-Poincaré formulation of the Dirichlet-Neumann method. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3118928641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118928641</sourcerecordid><originalsourceid>FETCH-proquest_journals_31189286413</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOHGxESivMNNnEloC4gzalx0cicNXqSk9EJ_fH4dfACnM3xnxRIhJc_qQogNS70f8zwX1UGUpUzYrSH7RvdC2yFQD2FAOGmnu8FgyO4YJ2UtTBgGekJPDjxO2miLygEao-egO8AlqqDJ-h1b98p4TH_dsv3l_Giu2exoiehDO1J09kut5Lw-iroquPzv-gDIJD5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118928641</pqid></control><display><type>article</type><title>Convergence of the Dirichlet-Neumann method for semilinear elliptic equations</title><source>Free E- Journals</source><creator>Engström, Emil</creator><creatorcontrib>Engström, Emil</creatorcontrib><description>The Dirichlet-Neumann method is a common domain decomposition method for nonoverlapping domain decomposition and the method has been studied extensively for linear elliptic equations. However, for nonlinear elliptic equations, there are only convergence results for some specific cases in one spatial dimension. The aim of this manuscript is therefore to prove that the Dirichlet-Neumann method converges for a class of semilinear elliptic equations on Lipschitz continuous domains in two and three spatial dimensions. This is achieved by first proving a new result on the convergence of nonlinear iterations in Hilbert spaces and then applying this result to the Steklov-Poincaré formulation of the Dirichlet-Neumann method.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Domain decomposition methods ; Elliptic functions ; Hilbert space</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Engström, Emil</creatorcontrib><title>Convergence of the Dirichlet-Neumann method for semilinear elliptic equations</title><title>arXiv.org</title><description>The Dirichlet-Neumann method is a common domain decomposition method for nonoverlapping domain decomposition and the method has been studied extensively for linear elliptic equations. However, for nonlinear elliptic equations, there are only convergence results for some specific cases in one spatial dimension. The aim of this manuscript is therefore to prove that the Dirichlet-Neumann method converges for a class of semilinear elliptic equations on Lipschitz continuous domains in two and three spatial dimensions. This is achieved by first proving a new result on the convergence of nonlinear iterations in Hilbert spaces and then applying this result to the Steklov-Poincaré formulation of the Dirichlet-Neumann method.</description><subject>Convergence</subject><subject>Domain decomposition methods</subject><subject>Elliptic functions</subject><subject>Hilbert space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0OgjAUQOHGxESivMNNnEloC4gzalx0cicNXqSk9EJ_fH4dfACnM3xnxRIhJc_qQogNS70f8zwX1UGUpUzYrSH7RvdC2yFQD2FAOGmnu8FgyO4YJ2UtTBgGekJPDjxO2miLygEao-egO8AlqqDJ-h1b98p4TH_dsv3l_Giu2exoiehDO1J09kut5Lw-iroquPzv-gDIJD5k</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>Engström, Emil</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241018</creationdate><title>Convergence of the Dirichlet-Neumann method for semilinear elliptic equations</title><author>Engström, Emil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31189286413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Domain decomposition methods</topic><topic>Elliptic functions</topic><topic>Hilbert space</topic><toplevel>online_resources</toplevel><creatorcontrib>Engström, Emil</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engström, Emil</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Convergence of the Dirichlet-Neumann method for semilinear elliptic equations</atitle><jtitle>arXiv.org</jtitle><date>2024-10-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The Dirichlet-Neumann method is a common domain decomposition method for nonoverlapping domain decomposition and the method has been studied extensively for linear elliptic equations. However, for nonlinear elliptic equations, there are only convergence results for some specific cases in one spatial dimension. The aim of this manuscript is therefore to prove that the Dirichlet-Neumann method converges for a class of semilinear elliptic equations on Lipschitz continuous domains in two and three spatial dimensions. This is achieved by first proving a new result on the convergence of nonlinear iterations in Hilbert spaces and then applying this result to the Steklov-Poincaré formulation of the Dirichlet-Neumann method.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3118928641 |
source | Free E- Journals |
subjects | Convergence Domain decomposition methods Elliptic functions Hilbert space |
title | Convergence of the Dirichlet-Neumann method for semilinear elliptic equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Convergence%20of%20the%20Dirichlet-Neumann%20method%20for%20semilinear%20elliptic%20equations&rft.jtitle=arXiv.org&rft.au=Engstr%C3%B6m,%20Emil&rft.date=2024-10-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3118928641%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118928641&rft_id=info:pmid/&rfr_iscdi=true |