Extra-Gradient Method with Flexible Anchoring: Strong Convergence and Fast Residual Decay

In this paper, we introduce a novel Extra-Gradient method with anchor term governed by general parameters. Our method is derived from an explicit discretization of a Tikhonov-regularized monotone flow in Hilbert space, which provides a theoretical foundation for analyzing its convergence properties....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Boţ, Radu Ioan, Chenchene, Enis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Boţ, Radu Ioan
Chenchene, Enis
description In this paper, we introduce a novel Extra-Gradient method with anchor term governed by general parameters. Our method is derived from an explicit discretization of a Tikhonov-regularized monotone flow in Hilbert space, which provides a theoretical foundation for analyzing its convergence properties. We establish strong convergence to specific points within the solution set, as well as convergence rates expressed in terms of the regularization parameters. Notably, our approach recovers the fast residual decay rate \(O(k^{-1})\) for standard parameter choices. Numerical experiments highlight the competitiveness of the method and demonstrate how its flexible design enhances practical performance.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3118928631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118928631</sourcerecordid><originalsourceid>FETCH-proquest_journals_31189286313</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_MNLnEloK4huBkEXF3VxIhWeUEJabYvi3-vgBzjd4dwR8RjnNEgWjE2Ib20bhiGLlyyKuEcu2eCMCHZGVBKVgwO6Rlfwkq6BvMNBXjuEjSobbaSq13ByRqsaUq2eaGpUJYJQFeTCOjiilVUvOthiKd4zMr6JzqL_65TM8-yc7oO70Y8erSta3Rv1pYJTmqxYEnPK_7s-nRxBuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118928631</pqid></control><display><type>article</type><title>Extra-Gradient Method with Flexible Anchoring: Strong Convergence and Fast Residual Decay</title><source>Free E- Journals</source><creator>Boţ, Radu Ioan ; Chenchene, Enis</creator><creatorcontrib>Boţ, Radu Ioan ; Chenchene, Enis</creatorcontrib><description>In this paper, we introduce a novel Extra-Gradient method with anchor term governed by general parameters. Our method is derived from an explicit discretization of a Tikhonov-regularized monotone flow in Hilbert space, which provides a theoretical foundation for analyzing its convergence properties. We establish strong convergence to specific points within the solution set, as well as convergence rates expressed in terms of the regularization parameters. Notably, our approach recovers the fast residual decay rate \(O(k^{-1})\) for standard parameter choices. Numerical experiments highlight the competitiveness of the method and demonstrate how its flexible design enhances practical performance.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Decay rate ; Design standards ; Hilbert space ; Parameters ; Regularization</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Boţ, Radu Ioan</creatorcontrib><creatorcontrib>Chenchene, Enis</creatorcontrib><title>Extra-Gradient Method with Flexible Anchoring: Strong Convergence and Fast Residual Decay</title><title>arXiv.org</title><description>In this paper, we introduce a novel Extra-Gradient method with anchor term governed by general parameters. Our method is derived from an explicit discretization of a Tikhonov-regularized monotone flow in Hilbert space, which provides a theoretical foundation for analyzing its convergence properties. We establish strong convergence to specific points within the solution set, as well as convergence rates expressed in terms of the regularization parameters. Notably, our approach recovers the fast residual decay rate \(O(k^{-1})\) for standard parameter choices. Numerical experiments highlight the competitiveness of the method and demonstrate how its flexible design enhances practical performance.</description><subject>Convergence</subject><subject>Decay rate</subject><subject>Design standards</subject><subject>Hilbert space</subject><subject>Parameters</subject><subject>Regularization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_MNLnEloK4huBkEXF3VxIhWeUEJabYvi3-vgBzjd4dwR8RjnNEgWjE2Ib20bhiGLlyyKuEcu2eCMCHZGVBKVgwO6Rlfwkq6BvMNBXjuEjSobbaSq13ByRqsaUq2eaGpUJYJQFeTCOjiilVUvOthiKd4zMr6JzqL_65TM8-yc7oO70Y8erSta3Rv1pYJTmqxYEnPK_7s-nRxBuA</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>Boţ, Radu Ioan</creator><creator>Chenchene, Enis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241018</creationdate><title>Extra-Gradient Method with Flexible Anchoring: Strong Convergence and Fast Residual Decay</title><author>Boţ, Radu Ioan ; Chenchene, Enis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31189286313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Decay rate</topic><topic>Design standards</topic><topic>Hilbert space</topic><topic>Parameters</topic><topic>Regularization</topic><toplevel>online_resources</toplevel><creatorcontrib>Boţ, Radu Ioan</creatorcontrib><creatorcontrib>Chenchene, Enis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boţ, Radu Ioan</au><au>Chenchene, Enis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Extra-Gradient Method with Flexible Anchoring: Strong Convergence and Fast Residual Decay</atitle><jtitle>arXiv.org</jtitle><date>2024-10-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we introduce a novel Extra-Gradient method with anchor term governed by general parameters. Our method is derived from an explicit discretization of a Tikhonov-regularized monotone flow in Hilbert space, which provides a theoretical foundation for analyzing its convergence properties. We establish strong convergence to specific points within the solution set, as well as convergence rates expressed in terms of the regularization parameters. Notably, our approach recovers the fast residual decay rate \(O(k^{-1})\) for standard parameter choices. Numerical experiments highlight the competitiveness of the method and demonstrate how its flexible design enhances practical performance.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3118928631
source Free E- Journals
subjects Convergence
Decay rate
Design standards
Hilbert space
Parameters
Regularization
title Extra-Gradient Method with Flexible Anchoring: Strong Convergence and Fast Residual Decay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Extra-Gradient%20Method%20with%20Flexible%20Anchoring:%20Strong%20Convergence%20and%20Fast%20Residual%20Decay&rft.jtitle=arXiv.org&rft.au=Bo%C5%A3,%20Radu%20Ioan&rft.date=2024-10-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3118928631%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118928631&rft_id=info:pmid/&rfr_iscdi=true