HeightCeleb - an enrichment of VoxCeleb dataset with speaker height information
Prediction of speaker's height is of interest for voice forensics, surveillance, and automatic speaker profiling. Until now, TIMIT has been the most popular dataset for training and evaluation of the height estimation methods. In this paper, we introduce HeightCeleb, an extension to VoxCeleb, w...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kacprzak, Stanisław Kowalczyk, Konrad |
description | Prediction of speaker's height is of interest for voice forensics, surveillance, and automatic speaker profiling. Until now, TIMIT has been the most popular dataset for training and evaluation of the height estimation methods. In this paper, we introduce HeightCeleb, an extension to VoxCeleb, which is the dataset commonly used in speaker recognition tasks. This enrichment consists in adding information about the height of all 1251 speakers from VoxCeleb that has been extracted with an automated method from publicly available sources. Such annotated data will enable the research community to utilize freely available speaker embedding extractors, pre-trained on VoxCeleb, to build more efficient speaker height estimators. In this work, we describe the creation of the HeightCeleb dataset and show that using it enables to achieve state-of-the-art results on the TIMIT test set by using simple statistical regression methods and embeddings obtained with a popular speaker model (without any additional fine-tuning). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3118924567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118924567</sourcerecordid><originalsourceid>FETCH-proquest_journals_31189245673</originalsourceid><addsrcrecordid>eNqNi0sKwjAUAIMgWLR3eOC60Cb9uS5Kd27EbYn6alLbpCav6PEV9QCuZjEzMxZwIZKoTDlfsND7Lo5jnhc8y0TA9jXqq6IKezxBBNIAGqfPakBDYFs42ufXXSRJjwQPTQr8iPKGDtRnBm1a6wZJ2poVm7ey9xj-uGTr3fZQ1dHo7H1CT01nJ2feqhFJUm54muWF-K96AeDHPmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118924567</pqid></control><display><type>article</type><title>HeightCeleb - an enrichment of VoxCeleb dataset with speaker height information</title><source>Free E- Journals</source><creator>Kacprzak, Stanisław ; Kowalczyk, Konrad</creator><creatorcontrib>Kacprzak, Stanisław ; Kowalczyk, Konrad</creatorcontrib><description>Prediction of speaker's height is of interest for voice forensics, surveillance, and automatic speaker profiling. Until now, TIMIT has been the most popular dataset for training and evaluation of the height estimation methods. In this paper, we introduce HeightCeleb, an extension to VoxCeleb, which is the dataset commonly used in speaker recognition tasks. This enrichment consists in adding information about the height of all 1251 speakers from VoxCeleb that has been extracted with an automated method from publicly available sources. Such annotated data will enable the research community to utilize freely available speaker embedding extractors, pre-trained on VoxCeleb, to build more efficient speaker height estimators. In this work, we describe the creation of the HeightCeleb dataset and show that using it enables to achieve state-of-the-art results on the TIMIT test set by using simple statistical regression methods and embeddings obtained with a popular speaker model (without any additional fine-tuning).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Regression models ; Speech recognition ; Statistical analysis ; Statistical methods</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kacprzak, Stanisław</creatorcontrib><creatorcontrib>Kowalczyk, Konrad</creatorcontrib><title>HeightCeleb - an enrichment of VoxCeleb dataset with speaker height information</title><title>arXiv.org</title><description>Prediction of speaker's height is of interest for voice forensics, surveillance, and automatic speaker profiling. Until now, TIMIT has been the most popular dataset for training and evaluation of the height estimation methods. In this paper, we introduce HeightCeleb, an extension to VoxCeleb, which is the dataset commonly used in speaker recognition tasks. This enrichment consists in adding information about the height of all 1251 speakers from VoxCeleb that has been extracted with an automated method from publicly available sources. Such annotated data will enable the research community to utilize freely available speaker embedding extractors, pre-trained on VoxCeleb, to build more efficient speaker height estimators. In this work, we describe the creation of the HeightCeleb dataset and show that using it enables to achieve state-of-the-art results on the TIMIT test set by using simple statistical regression methods and embeddings obtained with a popular speaker model (without any additional fine-tuning).</description><subject>Datasets</subject><subject>Regression models</subject><subject>Speech recognition</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0sKwjAUAIMgWLR3eOC60Cb9uS5Kd27EbYn6alLbpCav6PEV9QCuZjEzMxZwIZKoTDlfsND7Lo5jnhc8y0TA9jXqq6IKezxBBNIAGqfPakBDYFs42ufXXSRJjwQPTQr8iPKGDtRnBm1a6wZJ2poVm7ey9xj-uGTr3fZQ1dHo7H1CT01nJ2feqhFJUm54muWF-K96AeDHPmY</recordid><startdate>20241017</startdate><enddate>20241017</enddate><creator>Kacprzak, Stanisław</creator><creator>Kowalczyk, Konrad</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241017</creationdate><title>HeightCeleb - an enrichment of VoxCeleb dataset with speaker height information</title><author>Kacprzak, Stanisław ; Kowalczyk, Konrad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31189245673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Regression models</topic><topic>Speech recognition</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Kacprzak, Stanisław</creatorcontrib><creatorcontrib>Kowalczyk, Konrad</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kacprzak, Stanisław</au><au>Kowalczyk, Konrad</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>HeightCeleb - an enrichment of VoxCeleb dataset with speaker height information</atitle><jtitle>arXiv.org</jtitle><date>2024-10-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Prediction of speaker's height is of interest for voice forensics, surveillance, and automatic speaker profiling. Until now, TIMIT has been the most popular dataset for training and evaluation of the height estimation methods. In this paper, we introduce HeightCeleb, an extension to VoxCeleb, which is the dataset commonly used in speaker recognition tasks. This enrichment consists in adding information about the height of all 1251 speakers from VoxCeleb that has been extracted with an automated method from publicly available sources. Such annotated data will enable the research community to utilize freely available speaker embedding extractors, pre-trained on VoxCeleb, to build more efficient speaker height estimators. In this work, we describe the creation of the HeightCeleb dataset and show that using it enables to achieve state-of-the-art results on the TIMIT test set by using simple statistical regression methods and embeddings obtained with a popular speaker model (without any additional fine-tuning).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3118924567 |
source | Free E- Journals |
subjects | Datasets Regression models Speech recognition Statistical analysis Statistical methods |
title | HeightCeleb - an enrichment of VoxCeleb dataset with speaker height information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=HeightCeleb%20-%20an%20enrichment%20of%20VoxCeleb%20dataset%20with%20speaker%20height%20information&rft.jtitle=arXiv.org&rft.au=Kacprzak,%20Stanis%C5%82aw&rft.date=2024-10-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3118924567%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118924567&rft_id=info:pmid/&rfr_iscdi=true |