HCNT/AgNPs/PVA/PAM hydrogel-based flexible pressure sensor for physiological monitoring
Flexible wearable devices for health monitoring require continuous wear throughout the day, making flexible pressure sensors a critical component that has attracted significant attention. Polyacrylamide (PAM) and polyvinyl alcohol (PVA) were used as hydrogel substrate materials to fabricate wearable...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2024-10, Vol.35 (29), p.1931, Article 1931 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 29 |
container_start_page | 1931 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 35 |
creator | Wang, Junru Xia, Guoxiang Xia, Longquan Chen, Yunfeng Li, Qinyuan Zeng, Hong Yang, Weiguo Du, Yongjie He, Wei Chen, Yuanming |
description | Flexible wearable devices for health monitoring require continuous wear throughout the day, making flexible pressure sensors a critical component that has attracted significant attention. Polyacrylamide (PAM) and polyvinyl alcohol (PVA) were used as hydrogel substrate materials to fabricate wearable devices with on-the-go wearability. Helical carbon nanotubes (HCNTs) were employed as conductive fillers, with silver nanoparticles (AgNPs) deposited on their surface to enhance conductivity. The conductive HCNT/AgNPs fillers bonded with the PVA/PAM substrate via metal–hydrogen bonds, metal complexes, and Ag–O bonds. This bonding enhanced the binding strength of the gel and accelerated polymerization. Pressure sensors packaged within the hydrogel exhibited high sensitivity of 0.118 kPa
–1
to minor deformations and high sensitivity of 0.0141 kPa
–1
to regular deformations, providing a flexible pressure sensor with high sensitivity and fast response. This innovation delivers a highly sensitive and fast-responding flexible pressure sensor, paving the way for advanced flexible wearable electronic devices. |
doi_str_mv | 10.1007/s10854-024-13689-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3118520212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118520212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-5b6438650ce810ae5b3523953694218182d86c189605bd2d26e670b533f3ffce3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhF4myytmPHOUYVUKQCPZTHzcrDSVOlcfC2Ev33pASJG4fVXmZmdz5CrhncMoA4RAZaRhR4RJlQOqHJCZkwGQsaaf5xSiaQyJhGkvNzcoG4AQAVCT0h7_PZ8ypM6-clhsu3NFymT8H6UHpX25bmGdoyqFr71eStDXpvEffeBmg7dD6ohunXB2xc6-qmyNpg67pm53zT1ZfkrMpatFe_e0pe7-9WszldvDw8ztIFLTjAjsr8-IaSUFjNILMyF5KLRAqVRJxppnmpVcF0okDmJS-5siqGXApRiaoqrJiSmzG39-5zb3FnNm7vu-GkEYxpyYEzPqj4qCq8Q_S2Mr1vtpk_GAbmCNCMAM0A0PwANMlgEqMJ-2Mj6_-i_3F9A0wHch8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118520212</pqid></control><display><type>article</type><title>HCNT/AgNPs/PVA/PAM hydrogel-based flexible pressure sensor for physiological monitoring</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Junru ; Xia, Guoxiang ; Xia, Longquan ; Chen, Yunfeng ; Li, Qinyuan ; Zeng, Hong ; Yang, Weiguo ; Du, Yongjie ; He, Wei ; Chen, Yuanming</creator><creatorcontrib>Wang, Junru ; Xia, Guoxiang ; Xia, Longquan ; Chen, Yunfeng ; Li, Qinyuan ; Zeng, Hong ; Yang, Weiguo ; Du, Yongjie ; He, Wei ; Chen, Yuanming</creatorcontrib><description>Flexible wearable devices for health monitoring require continuous wear throughout the day, making flexible pressure sensors a critical component that has attracted significant attention. Polyacrylamide (PAM) and polyvinyl alcohol (PVA) were used as hydrogel substrate materials to fabricate wearable devices with on-the-go wearability. Helical carbon nanotubes (HCNTs) were employed as conductive fillers, with silver nanoparticles (AgNPs) deposited on their surface to enhance conductivity. The conductive HCNT/AgNPs fillers bonded with the PVA/PAM substrate via metal–hydrogen bonds, metal complexes, and Ag–O bonds. This bonding enhanced the binding strength of the gel and accelerated polymerization. Pressure sensors packaged within the hydrogel exhibited high sensitivity of 0.118 kPa
–1
to minor deformations and high sensitivity of 0.0141 kPa
–1
to regular deformations, providing a flexible pressure sensor with high sensitivity and fast response. This innovation delivers a highly sensitive and fast-responding flexible pressure sensor, paving the way for advanced flexible wearable electronic devices.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-024-13689-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biocompatibility ; Bonding strength ; Carbon ; Carbon nanotubes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Coordination compounds ; Copper ; Critical components ; Deformation wear ; Dopamine ; Electrodes ; Electron microscopes ; Fillers ; Hydrogels ; Hydrogen bonds ; Materials Science ; Nanomaterials ; Nanoparticles ; Optical and Electronic Materials ; Physiology ; Polyacrylamide ; Polymers ; Polyvinyl alcohol ; Pressure sensors ; Sensors ; Silver ; Sodium ; Substrates ; Tensile strength ; Wearable computers ; Wearable technology</subject><ispartof>Journal of materials science. Materials in electronics, 2024-10, Vol.35 (29), p.1931, Article 1931</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-5b6438650ce810ae5b3523953694218182d86c189605bd2d26e670b533f3ffce3</cites><orcidid>0000-0001-7955-3350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-024-13689-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-024-13689-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Junru</creatorcontrib><creatorcontrib>Xia, Guoxiang</creatorcontrib><creatorcontrib>Xia, Longquan</creatorcontrib><creatorcontrib>Chen, Yunfeng</creatorcontrib><creatorcontrib>Li, Qinyuan</creatorcontrib><creatorcontrib>Zeng, Hong</creatorcontrib><creatorcontrib>Yang, Weiguo</creatorcontrib><creatorcontrib>Du, Yongjie</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Chen, Yuanming</creatorcontrib><title>HCNT/AgNPs/PVA/PAM hydrogel-based flexible pressure sensor for physiological monitoring</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Flexible wearable devices for health monitoring require continuous wear throughout the day, making flexible pressure sensors a critical component that has attracted significant attention. Polyacrylamide (PAM) and polyvinyl alcohol (PVA) were used as hydrogel substrate materials to fabricate wearable devices with on-the-go wearability. Helical carbon nanotubes (HCNTs) were employed as conductive fillers, with silver nanoparticles (AgNPs) deposited on their surface to enhance conductivity. The conductive HCNT/AgNPs fillers bonded with the PVA/PAM substrate via metal–hydrogen bonds, metal complexes, and Ag–O bonds. This bonding enhanced the binding strength of the gel and accelerated polymerization. Pressure sensors packaged within the hydrogel exhibited high sensitivity of 0.118 kPa
–1
to minor deformations and high sensitivity of 0.0141 kPa
–1
to regular deformations, providing a flexible pressure sensor with high sensitivity and fast response. This innovation delivers a highly sensitive and fast-responding flexible pressure sensor, paving the way for advanced flexible wearable electronic devices.</description><subject>Biocompatibility</subject><subject>Bonding strength</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Coordination compounds</subject><subject>Copper</subject><subject>Critical components</subject><subject>Deformation wear</subject><subject>Dopamine</subject><subject>Electrodes</subject><subject>Electron microscopes</subject><subject>Fillers</subject><subject>Hydrogels</subject><subject>Hydrogen bonds</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Physiology</subject><subject>Polyacrylamide</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Pressure sensors</subject><subject>Sensors</subject><subject>Silver</subject><subject>Sodium</subject><subject>Substrates</subject><subject>Tensile strength</subject><subject>Wearable computers</subject><subject>Wearable technology</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhF4myytmPHOUYVUKQCPZTHzcrDSVOlcfC2Ev33pASJG4fVXmZmdz5CrhncMoA4RAZaRhR4RJlQOqHJCZkwGQsaaf5xSiaQyJhGkvNzcoG4AQAVCT0h7_PZ8ypM6-clhsu3NFymT8H6UHpX25bmGdoyqFr71eStDXpvEffeBmg7dD6ohunXB2xc6-qmyNpg67pm53zT1ZfkrMpatFe_e0pe7-9WszldvDw8ztIFLTjAjsr8-IaSUFjNILMyF5KLRAqVRJxppnmpVcF0okDmJS-5siqGXApRiaoqrJiSmzG39-5zb3FnNm7vu-GkEYxpyYEzPqj4qCq8Q_S2Mr1vtpk_GAbmCNCMAM0A0PwANMlgEqMJ-2Mj6_-i_3F9A0wHch8</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Wang, Junru</creator><creator>Xia, Guoxiang</creator><creator>Xia, Longquan</creator><creator>Chen, Yunfeng</creator><creator>Li, Qinyuan</creator><creator>Zeng, Hong</creator><creator>Yang, Weiguo</creator><creator>Du, Yongjie</creator><creator>He, Wei</creator><creator>Chen, Yuanming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7955-3350</orcidid></search><sort><creationdate>20241001</creationdate><title>HCNT/AgNPs/PVA/PAM hydrogel-based flexible pressure sensor for physiological monitoring</title><author>Wang, Junru ; Xia, Guoxiang ; Xia, Longquan ; Chen, Yunfeng ; Li, Qinyuan ; Zeng, Hong ; Yang, Weiguo ; Du, Yongjie ; He, Wei ; Chen, Yuanming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-5b6438650ce810ae5b3523953694218182d86c189605bd2d26e670b533f3ffce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biocompatibility</topic><topic>Bonding strength</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Coordination compounds</topic><topic>Copper</topic><topic>Critical components</topic><topic>Deformation wear</topic><topic>Dopamine</topic><topic>Electrodes</topic><topic>Electron microscopes</topic><topic>Fillers</topic><topic>Hydrogels</topic><topic>Hydrogen bonds</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Physiology</topic><topic>Polyacrylamide</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Pressure sensors</topic><topic>Sensors</topic><topic>Silver</topic><topic>Sodium</topic><topic>Substrates</topic><topic>Tensile strength</topic><topic>Wearable computers</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Junru</creatorcontrib><creatorcontrib>Xia, Guoxiang</creatorcontrib><creatorcontrib>Xia, Longquan</creatorcontrib><creatorcontrib>Chen, Yunfeng</creatorcontrib><creatorcontrib>Li, Qinyuan</creatorcontrib><creatorcontrib>Zeng, Hong</creatorcontrib><creatorcontrib>Yang, Weiguo</creatorcontrib><creatorcontrib>Du, Yongjie</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Chen, Yuanming</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Junru</au><au>Xia, Guoxiang</au><au>Xia, Longquan</au><au>Chen, Yunfeng</au><au>Li, Qinyuan</au><au>Zeng, Hong</au><au>Yang, Weiguo</au><au>Du, Yongjie</au><au>He, Wei</au><au>Chen, Yuanming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HCNT/AgNPs/PVA/PAM hydrogel-based flexible pressure sensor for physiological monitoring</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>35</volume><issue>29</issue><spage>1931</spage><pages>1931-</pages><artnum>1931</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Flexible wearable devices for health monitoring require continuous wear throughout the day, making flexible pressure sensors a critical component that has attracted significant attention. Polyacrylamide (PAM) and polyvinyl alcohol (PVA) were used as hydrogel substrate materials to fabricate wearable devices with on-the-go wearability. Helical carbon nanotubes (HCNTs) were employed as conductive fillers, with silver nanoparticles (AgNPs) deposited on their surface to enhance conductivity. The conductive HCNT/AgNPs fillers bonded with the PVA/PAM substrate via metal–hydrogen bonds, metal complexes, and Ag–O bonds. This bonding enhanced the binding strength of the gel and accelerated polymerization. Pressure sensors packaged within the hydrogel exhibited high sensitivity of 0.118 kPa
–1
to minor deformations and high sensitivity of 0.0141 kPa
–1
to regular deformations, providing a flexible pressure sensor with high sensitivity and fast response. This innovation delivers a highly sensitive and fast-responding flexible pressure sensor, paving the way for advanced flexible wearable electronic devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-024-13689-9</doi><orcidid>https://orcid.org/0000-0001-7955-3350</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2024-10, Vol.35 (29), p.1931, Article 1931 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_3118520212 |
source | Springer Nature - Complete Springer Journals |
subjects | Biocompatibility Bonding strength Carbon Carbon nanotubes Characterization and Evaluation of Materials Chemistry and Materials Science Coordination compounds Copper Critical components Deformation wear Dopamine Electrodes Electron microscopes Fillers Hydrogels Hydrogen bonds Materials Science Nanomaterials Nanoparticles Optical and Electronic Materials Physiology Polyacrylamide Polymers Polyvinyl alcohol Pressure sensors Sensors Silver Sodium Substrates Tensile strength Wearable computers Wearable technology |
title | HCNT/AgNPs/PVA/PAM hydrogel-based flexible pressure sensor for physiological monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HCNT/AgNPs/PVA/PAM%20hydrogel-based%20flexible%20pressure%20sensor%20for%20physiological%20monitoring&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Wang,%20Junru&rft.date=2024-10-01&rft.volume=35&rft.issue=29&rft.spage=1931&rft.pages=1931-&rft.artnum=1931&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-024-13689-9&rft_dat=%3Cproquest_cross%3E3118520212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118520212&rft_id=info:pmid/&rfr_iscdi=true |