Optimal Composition of the Sby(S1−x,Sex)3 Ternary Absorber for High Efficiency Solar Cells

Solar cells based on Sb2(S1−x,Sex)3 ternary compounds have shown the highest reported efficiency value compared to their Sb2Se3 and Sb2S3 counterparts in antimony chalcogenide technology. However, the reported record efficiencies for these new emergent solar cells are still well below the theoretica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2024-10, Vol.221 (20), p.n/a
Hauptverfasser: Nicolás‐Marín, Miriam M., González‐Castillo, Jesús Roberto, Courel‐Piedrahita, Maykel, Riech‐Méndez, Inés, Mijangos‐Alonzo, Pedro Antonio, Vigil‐Galán, Osvaldo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 221
creator Nicolás‐Marín, Miriam M.
González‐Castillo, Jesús Roberto
Courel‐Piedrahita, Maykel
Riech‐Méndez, Inés
Mijangos‐Alonzo, Pedro Antonio
Vigil‐Galán, Osvaldo
description Solar cells based on Sb2(S1−x,Sex)3 ternary compounds have shown the highest reported efficiency value compared to their Sb2Se3 and Sb2S3 counterparts in antimony chalcogenide technology. However, the reported record efficiencies for these new emergent solar cells are still well below the theoretical values according to their bandgap value or for the traditional solar cells in the thin film technology. This article presents an analysis regarding the optimal composition that guarantees an increase in efficiency in the manufacture of Sby(S1−x,Sex)3 solar cells, as well as the proposal of a new synthesis method that allows obtaining the ternary compound with the calculated optimal composition. From theoretical considerations, a composition of Sb1.85(S0.63,Se0.42)3 is obtained. This composition is equivalent to optimal values Se/(S + Se) = 0.4 and Sb/(S + Se) = 0.88. The results of the new proposed synthesis method are presented and discussed. This article presents an analysis regarding the optimal composition that guarantees an increase in efficiency in the manufacture of Sby(S1−x,Sex)3 solar cells, as well as the proposal of a new synthesis method that allows obtaining the ternary compound with the calculated optimal composition. From theoretical considerations, a composition of Sb1.85(S0.63,Se0.42)3 is obtained.
doi_str_mv 10.1002/pssa.202400288
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3118516579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118516579</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2178-2ceab1432e993eb605a86126015e0d5fceee1b6fc06dbf1dce80b632b63c1823</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKtXzwEvCm7NJLtp9lhKtUKhwvYohM120m7ZNmuyxe4_8OxP9Je4RelhmHnweLz5CLkFNgDG-FMdQj7gjMedUOqM9EBJHkkB6fnpZuySXIWwYSxO4iH0yPu8bsptXtGx29YulE3pdtRZ2qyRZqa9z-Dn6_vwmOHhQdAF-l3uWzoywXmDnlrn6bRcrenE2rIocVe0NHNV7ukYqypckwubVwFv_nefLJ4ni_E0ms1fXsejWbTiMFQRLzA3EAuOaSrQSJbkSgKXDBJky8QWiAhG2oLJpbGwLFAxIwXvpgDFRZ_c_cXW3n3sMTR64_Zd0ypoAaASkMkw7Vzpn-uzrLDVte_e9q0Gpo_09JGePtHTb1k2OinxC_VdZlU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118516579</pqid></control><display><type>article</type><title>Optimal Composition of the Sby(S1−x,Sex)3 Ternary Absorber for High Efficiency Solar Cells</title><source>Wiley Journals</source><creator>Nicolás‐Marín, Miriam M. ; González‐Castillo, Jesús Roberto ; Courel‐Piedrahita, Maykel ; Riech‐Méndez, Inés ; Mijangos‐Alonzo, Pedro Antonio ; Vigil‐Galán, Osvaldo</creator><creatorcontrib>Nicolás‐Marín, Miriam M. ; González‐Castillo, Jesús Roberto ; Courel‐Piedrahita, Maykel ; Riech‐Méndez, Inés ; Mijangos‐Alonzo, Pedro Antonio ; Vigil‐Galán, Osvaldo</creatorcontrib><description>Solar cells based on Sb2(S1−x,Sex)3 ternary compounds have shown the highest reported efficiency value compared to their Sb2Se3 and Sb2S3 counterparts in antimony chalcogenide technology. However, the reported record efficiencies for these new emergent solar cells are still well below the theoretical values according to their bandgap value or for the traditional solar cells in the thin film technology. This article presents an analysis regarding the optimal composition that guarantees an increase in efficiency in the manufacture of Sby(S1−x,Sex)3 solar cells, as well as the proposal of a new synthesis method that allows obtaining the ternary compound with the calculated optimal composition. From theoretical considerations, a composition of Sb1.85(S0.63,Se0.42)3 is obtained. This composition is equivalent to optimal values Se/(S + Se) = 0.4 and Sb/(S + Se) = 0.88. The results of the new proposed synthesis method are presented and discussed. This article presents an analysis regarding the optimal composition that guarantees an increase in efficiency in the manufacture of Sby(S1−x,Sex)3 solar cells, as well as the proposal of a new synthesis method that allows obtaining the ternary compound with the calculated optimal composition. From theoretical considerations, a composition of Sb1.85(S0.63,Se0.42)3 is obtained.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202400288</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>antimony chalcogenide ; Antimony compounds ; Composition ; Efficiency ; optimal composition ; Photovoltaic cells ; Sex ; Solar cells ; Synthesis ; Technology assessment ; Thin films</subject><ispartof>Physica status solidi. A, Applications and materials science, 2024-10, Vol.221 (20), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7447-9702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202400288$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202400288$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Nicolás‐Marín, Miriam M.</creatorcontrib><creatorcontrib>González‐Castillo, Jesús Roberto</creatorcontrib><creatorcontrib>Courel‐Piedrahita, Maykel</creatorcontrib><creatorcontrib>Riech‐Méndez, Inés</creatorcontrib><creatorcontrib>Mijangos‐Alonzo, Pedro Antonio</creatorcontrib><creatorcontrib>Vigil‐Galán, Osvaldo</creatorcontrib><title>Optimal Composition of the Sby(S1−x,Sex)3 Ternary Absorber for High Efficiency Solar Cells</title><title>Physica status solidi. A, Applications and materials science</title><description>Solar cells based on Sb2(S1−x,Sex)3 ternary compounds have shown the highest reported efficiency value compared to their Sb2Se3 and Sb2S3 counterparts in antimony chalcogenide technology. However, the reported record efficiencies for these new emergent solar cells are still well below the theoretical values according to their bandgap value or for the traditional solar cells in the thin film technology. This article presents an analysis regarding the optimal composition that guarantees an increase in efficiency in the manufacture of Sby(S1−x,Sex)3 solar cells, as well as the proposal of a new synthesis method that allows obtaining the ternary compound with the calculated optimal composition. From theoretical considerations, a composition of Sb1.85(S0.63,Se0.42)3 is obtained. This composition is equivalent to optimal values Se/(S + Se) = 0.4 and Sb/(S + Se) = 0.88. The results of the new proposed synthesis method are presented and discussed. This article presents an analysis regarding the optimal composition that guarantees an increase in efficiency in the manufacture of Sby(S1−x,Sex)3 solar cells, as well as the proposal of a new synthesis method that allows obtaining the ternary compound with the calculated optimal composition. From theoretical considerations, a composition of Sb1.85(S0.63,Se0.42)3 is obtained.</description><subject>antimony chalcogenide</subject><subject>Antimony compounds</subject><subject>Composition</subject><subject>Efficiency</subject><subject>optimal composition</subject><subject>Photovoltaic cells</subject><subject>Sex</subject><subject>Solar cells</subject><subject>Synthesis</subject><subject>Technology assessment</subject><subject>Thin films</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWKtXzwEvCm7NJLtp9lhKtUKhwvYohM120m7ZNmuyxe4_8OxP9Je4RelhmHnweLz5CLkFNgDG-FMdQj7gjMedUOqM9EBJHkkB6fnpZuySXIWwYSxO4iH0yPu8bsptXtGx29YulE3pdtRZ2qyRZqa9z-Dn6_vwmOHhQdAF-l3uWzoywXmDnlrn6bRcrenE2rIocVe0NHNV7ukYqypckwubVwFv_nefLJ4ni_E0ms1fXsejWbTiMFQRLzA3EAuOaSrQSJbkSgKXDBJky8QWiAhG2oLJpbGwLFAxIwXvpgDFRZ_c_cXW3n3sMTR64_Zd0ypoAaASkMkw7Vzpn-uzrLDVte_e9q0Gpo_09JGePtHTb1k2OinxC_VdZlU</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Nicolás‐Marín, Miriam M.</creator><creator>González‐Castillo, Jesús Roberto</creator><creator>Courel‐Piedrahita, Maykel</creator><creator>Riech‐Méndez, Inés</creator><creator>Mijangos‐Alonzo, Pedro Antonio</creator><creator>Vigil‐Galán, Osvaldo</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7447-9702</orcidid></search><sort><creationdate>202410</creationdate><title>Optimal Composition of the Sby(S1−x,Sex)3 Ternary Absorber for High Efficiency Solar Cells</title><author>Nicolás‐Marín, Miriam M. ; González‐Castillo, Jesús Roberto ; Courel‐Piedrahita, Maykel ; Riech‐Méndez, Inés ; Mijangos‐Alonzo, Pedro Antonio ; Vigil‐Galán, Osvaldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2178-2ceab1432e993eb605a86126015e0d5fceee1b6fc06dbf1dce80b632b63c1823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>antimony chalcogenide</topic><topic>Antimony compounds</topic><topic>Composition</topic><topic>Efficiency</topic><topic>optimal composition</topic><topic>Photovoltaic cells</topic><topic>Sex</topic><topic>Solar cells</topic><topic>Synthesis</topic><topic>Technology assessment</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicolás‐Marín, Miriam M.</creatorcontrib><creatorcontrib>González‐Castillo, Jesús Roberto</creatorcontrib><creatorcontrib>Courel‐Piedrahita, Maykel</creatorcontrib><creatorcontrib>Riech‐Méndez, Inés</creatorcontrib><creatorcontrib>Mijangos‐Alonzo, Pedro Antonio</creatorcontrib><creatorcontrib>Vigil‐Galán, Osvaldo</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicolás‐Marín, Miriam M.</au><au>González‐Castillo, Jesús Roberto</au><au>Courel‐Piedrahita, Maykel</au><au>Riech‐Méndez, Inés</au><au>Mijangos‐Alonzo, Pedro Antonio</au><au>Vigil‐Galán, Osvaldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Composition of the Sby(S1−x,Sex)3 Ternary Absorber for High Efficiency Solar Cells</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2024-10</date><risdate>2024</risdate><volume>221</volume><issue>20</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Solar cells based on Sb2(S1−x,Sex)3 ternary compounds have shown the highest reported efficiency value compared to their Sb2Se3 and Sb2S3 counterparts in antimony chalcogenide technology. However, the reported record efficiencies for these new emergent solar cells are still well below the theoretical values according to their bandgap value or for the traditional solar cells in the thin film technology. This article presents an analysis regarding the optimal composition that guarantees an increase in efficiency in the manufacture of Sby(S1−x,Sex)3 solar cells, as well as the proposal of a new synthesis method that allows obtaining the ternary compound with the calculated optimal composition. From theoretical considerations, a composition of Sb1.85(S0.63,Se0.42)3 is obtained. This composition is equivalent to optimal values Se/(S + Se) = 0.4 and Sb/(S + Se) = 0.88. The results of the new proposed synthesis method are presented and discussed. This article presents an analysis regarding the optimal composition that guarantees an increase in efficiency in the manufacture of Sby(S1−x,Sex)3 solar cells, as well as the proposal of a new synthesis method that allows obtaining the ternary compound with the calculated optimal composition. From theoretical considerations, a composition of Sb1.85(S0.63,Se0.42)3 is obtained.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202400288</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7447-9702</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2024-10, Vol.221 (20), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_3118516579
source Wiley Journals
subjects antimony chalcogenide
Antimony compounds
Composition
Efficiency
optimal composition
Photovoltaic cells
Sex
Solar cells
Synthesis
Technology assessment
Thin films
title Optimal Composition of the Sby(S1−x,Sex)3 Ternary Absorber for High Efficiency Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Composition%20of%20the%20Sby(S1%E2%88%92x,Sex)3%20Ternary%20Absorber%20for%20High%20Efficiency%20Solar%20Cells&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Nicol%C3%A1s%E2%80%90Mar%C3%ADn,%20Miriam%20M.&rft.date=2024-10&rft.volume=221&rft.issue=20&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202400288&rft_dat=%3Cproquest_wiley%3E3118516579%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118516579&rft_id=info:pmid/&rfr_iscdi=true