Optimal Composition of the Sby(S1−x,Sex)3 Ternary Absorber for High Efficiency Solar Cells
Solar cells based on Sb2(S1−x,Sex)3 ternary compounds have shown the highest reported efficiency value compared to their Sb2Se3 and Sb2S3 counterparts in antimony chalcogenide technology. However, the reported record efficiencies for these new emergent solar cells are still well below the theoretica...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2024-10, Vol.221 (20), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 221 |
creator | Nicolás‐Marín, Miriam M. González‐Castillo, Jesús Roberto Courel‐Piedrahita, Maykel Riech‐Méndez, Inés Mijangos‐Alonzo, Pedro Antonio Vigil‐Galán, Osvaldo |
description | Solar cells based on Sb2(S1−x,Sex)3 ternary compounds have shown the highest reported efficiency value compared to their Sb2Se3 and Sb2S3 counterparts in antimony chalcogenide technology. However, the reported record efficiencies for these new emergent solar cells are still well below the theoretical values according to their bandgap value or for the traditional solar cells in the thin film technology. This article presents an analysis regarding the optimal composition that guarantees an increase in efficiency in the manufacture of Sby(S1−x,Sex)3 solar cells, as well as the proposal of a new synthesis method that allows obtaining the ternary compound with the calculated optimal composition. From theoretical considerations, a composition of Sb1.85(S0.63,Se0.42)3 is obtained. This composition is equivalent to optimal values Se/(S + Se) = 0.4 and Sb/(S + Se) = 0.88. The results of the new proposed synthesis method are presented and discussed.
This article presents an analysis regarding the optimal composition that guarantees an increase in efficiency in the manufacture of Sby(S1−x,Sex)3 solar cells, as well as the proposal of a new synthesis method that allows obtaining the ternary compound with the calculated optimal composition. From theoretical considerations, a composition of Sb1.85(S0.63,Se0.42)3 is obtained. |
doi_str_mv | 10.1002/pssa.202400288 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3118516579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118516579</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2178-2ceab1432e993eb605a86126015e0d5fceee1b6fc06dbf1dce80b632b63c1823</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKtXzwEvCm7NJLtp9lhKtUKhwvYohM120m7ZNmuyxe4_8OxP9Je4RelhmHnweLz5CLkFNgDG-FMdQj7gjMedUOqM9EBJHkkB6fnpZuySXIWwYSxO4iH0yPu8bsptXtGx29YulE3pdtRZ2qyRZqa9z-Dn6_vwmOHhQdAF-l3uWzoywXmDnlrn6bRcrenE2rIocVe0NHNV7ukYqypckwubVwFv_nefLJ4ni_E0ms1fXsejWbTiMFQRLzA3EAuOaSrQSJbkSgKXDBJky8QWiAhG2oLJpbGwLFAxIwXvpgDFRZ_c_cXW3n3sMTR64_Zd0ypoAaASkMkw7Vzpn-uzrLDVte_e9q0Gpo_09JGePtHTb1k2OinxC_VdZlU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118516579</pqid></control><display><type>article</type><title>Optimal Composition of the Sby(S1−x,Sex)3 Ternary Absorber for High Efficiency Solar Cells</title><source>Wiley Journals</source><creator>Nicolás‐Marín, Miriam M. ; González‐Castillo, Jesús Roberto ; Courel‐Piedrahita, Maykel ; Riech‐Méndez, Inés ; Mijangos‐Alonzo, Pedro Antonio ; Vigil‐Galán, Osvaldo</creator><creatorcontrib>Nicolás‐Marín, Miriam M. ; González‐Castillo, Jesús Roberto ; Courel‐Piedrahita, Maykel ; Riech‐Méndez, Inés ; Mijangos‐Alonzo, Pedro Antonio ; Vigil‐Galán, Osvaldo</creatorcontrib><description>Solar cells based on Sb2(S1−x,Sex)3 ternary compounds have shown the highest reported efficiency value compared to their Sb2Se3 and Sb2S3 counterparts in antimony chalcogenide technology. However, the reported record efficiencies for these new emergent solar cells are still well below the theoretical values according to their bandgap value or for the traditional solar cells in the thin film technology. This article presents an analysis regarding the optimal composition that guarantees an increase in efficiency in the manufacture of Sby(S1−x,Sex)3 solar cells, as well as the proposal of a new synthesis method that allows obtaining the ternary compound with the calculated optimal composition. From theoretical considerations, a composition of Sb1.85(S0.63,Se0.42)3 is obtained. This composition is equivalent to optimal values Se/(S + Se) = 0.4 and Sb/(S + Se) = 0.88. The results of the new proposed synthesis method are presented and discussed.
This article presents an analysis regarding the optimal composition that guarantees an increase in efficiency in the manufacture of Sby(S1−x,Sex)3 solar cells, as well as the proposal of a new synthesis method that allows obtaining the ternary compound with the calculated optimal composition. From theoretical considerations, a composition of Sb1.85(S0.63,Se0.42)3 is obtained.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202400288</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>antimony chalcogenide ; Antimony compounds ; Composition ; Efficiency ; optimal composition ; Photovoltaic cells ; Sex ; Solar cells ; Synthesis ; Technology assessment ; Thin films</subject><ispartof>Physica status solidi. A, Applications and materials science, 2024-10, Vol.221 (20), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7447-9702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202400288$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202400288$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Nicolás‐Marín, Miriam M.</creatorcontrib><creatorcontrib>González‐Castillo, Jesús Roberto</creatorcontrib><creatorcontrib>Courel‐Piedrahita, Maykel</creatorcontrib><creatorcontrib>Riech‐Méndez, Inés</creatorcontrib><creatorcontrib>Mijangos‐Alonzo, Pedro Antonio</creatorcontrib><creatorcontrib>Vigil‐Galán, Osvaldo</creatorcontrib><title>Optimal Composition of the Sby(S1−x,Sex)3 Ternary Absorber for High Efficiency Solar Cells</title><title>Physica status solidi. A, Applications and materials science</title><description>Solar cells based on Sb2(S1−x,Sex)3 ternary compounds have shown the highest reported efficiency value compared to their Sb2Se3 and Sb2S3 counterparts in antimony chalcogenide technology. However, the reported record efficiencies for these new emergent solar cells are still well below the theoretical values according to their bandgap value or for the traditional solar cells in the thin film technology. This article presents an analysis regarding the optimal composition that guarantees an increase in efficiency in the manufacture of Sby(S1−x,Sex)3 solar cells, as well as the proposal of a new synthesis method that allows obtaining the ternary compound with the calculated optimal composition. From theoretical considerations, a composition of Sb1.85(S0.63,Se0.42)3 is obtained. This composition is equivalent to optimal values Se/(S + Se) = 0.4 and Sb/(S + Se) = 0.88. The results of the new proposed synthesis method are presented and discussed.
This article presents an analysis regarding the optimal composition that guarantees an increase in efficiency in the manufacture of Sby(S1−x,Sex)3 solar cells, as well as the proposal of a new synthesis method that allows obtaining the ternary compound with the calculated optimal composition. From theoretical considerations, a composition of Sb1.85(S0.63,Se0.42)3 is obtained.</description><subject>antimony chalcogenide</subject><subject>Antimony compounds</subject><subject>Composition</subject><subject>Efficiency</subject><subject>optimal composition</subject><subject>Photovoltaic cells</subject><subject>Sex</subject><subject>Solar cells</subject><subject>Synthesis</subject><subject>Technology assessment</subject><subject>Thin films</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWKtXzwEvCm7NJLtp9lhKtUKhwvYohM120m7ZNmuyxe4_8OxP9Je4RelhmHnweLz5CLkFNgDG-FMdQj7gjMedUOqM9EBJHkkB6fnpZuySXIWwYSxO4iH0yPu8bsptXtGx29YulE3pdtRZ2qyRZqa9z-Dn6_vwmOHhQdAF-l3uWzoywXmDnlrn6bRcrenE2rIocVe0NHNV7ukYqypckwubVwFv_nefLJ4ni_E0ms1fXsejWbTiMFQRLzA3EAuOaSrQSJbkSgKXDBJky8QWiAhG2oLJpbGwLFAxIwXvpgDFRZ_c_cXW3n3sMTR64_Zd0ypoAaASkMkw7Vzpn-uzrLDVte_e9q0Gpo_09JGePtHTb1k2OinxC_VdZlU</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Nicolás‐Marín, Miriam M.</creator><creator>González‐Castillo, Jesús Roberto</creator><creator>Courel‐Piedrahita, Maykel</creator><creator>Riech‐Méndez, Inés</creator><creator>Mijangos‐Alonzo, Pedro Antonio</creator><creator>Vigil‐Galán, Osvaldo</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7447-9702</orcidid></search><sort><creationdate>202410</creationdate><title>Optimal Composition of the Sby(S1−x,Sex)3 Ternary Absorber for High Efficiency Solar Cells</title><author>Nicolás‐Marín, Miriam M. ; González‐Castillo, Jesús Roberto ; Courel‐Piedrahita, Maykel ; Riech‐Méndez, Inés ; Mijangos‐Alonzo, Pedro Antonio ; Vigil‐Galán, Osvaldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2178-2ceab1432e993eb605a86126015e0d5fceee1b6fc06dbf1dce80b632b63c1823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>antimony chalcogenide</topic><topic>Antimony compounds</topic><topic>Composition</topic><topic>Efficiency</topic><topic>optimal composition</topic><topic>Photovoltaic cells</topic><topic>Sex</topic><topic>Solar cells</topic><topic>Synthesis</topic><topic>Technology assessment</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicolás‐Marín, Miriam M.</creatorcontrib><creatorcontrib>González‐Castillo, Jesús Roberto</creatorcontrib><creatorcontrib>Courel‐Piedrahita, Maykel</creatorcontrib><creatorcontrib>Riech‐Méndez, Inés</creatorcontrib><creatorcontrib>Mijangos‐Alonzo, Pedro Antonio</creatorcontrib><creatorcontrib>Vigil‐Galán, Osvaldo</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicolás‐Marín, Miriam M.</au><au>González‐Castillo, Jesús Roberto</au><au>Courel‐Piedrahita, Maykel</au><au>Riech‐Méndez, Inés</au><au>Mijangos‐Alonzo, Pedro Antonio</au><au>Vigil‐Galán, Osvaldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Composition of the Sby(S1−x,Sex)3 Ternary Absorber for High Efficiency Solar Cells</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2024-10</date><risdate>2024</risdate><volume>221</volume><issue>20</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Solar cells based on Sb2(S1−x,Sex)3 ternary compounds have shown the highest reported efficiency value compared to their Sb2Se3 and Sb2S3 counterparts in antimony chalcogenide technology. However, the reported record efficiencies for these new emergent solar cells are still well below the theoretical values according to their bandgap value or for the traditional solar cells in the thin film technology. This article presents an analysis regarding the optimal composition that guarantees an increase in efficiency in the manufacture of Sby(S1−x,Sex)3 solar cells, as well as the proposal of a new synthesis method that allows obtaining the ternary compound with the calculated optimal composition. From theoretical considerations, a composition of Sb1.85(S0.63,Se0.42)3 is obtained. This composition is equivalent to optimal values Se/(S + Se) = 0.4 and Sb/(S + Se) = 0.88. The results of the new proposed synthesis method are presented and discussed.
This article presents an analysis regarding the optimal composition that guarantees an increase in efficiency in the manufacture of Sby(S1−x,Sex)3 solar cells, as well as the proposal of a new synthesis method that allows obtaining the ternary compound with the calculated optimal composition. From theoretical considerations, a composition of Sb1.85(S0.63,Se0.42)3 is obtained.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202400288</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7447-9702</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2024-10, Vol.221 (20), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_3118516579 |
source | Wiley Journals |
subjects | antimony chalcogenide Antimony compounds Composition Efficiency optimal composition Photovoltaic cells Sex Solar cells Synthesis Technology assessment Thin films |
title | Optimal Composition of the Sby(S1−x,Sex)3 Ternary Absorber for High Efficiency Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Composition%20of%20the%20Sby(S1%E2%88%92x,Sex)3%20Ternary%20Absorber%20for%20High%20Efficiency%20Solar%20Cells&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Nicol%C3%A1s%E2%80%90Mar%C3%ADn,%20Miriam%20M.&rft.date=2024-10&rft.volume=221&rft.issue=20&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202400288&rft_dat=%3Cproquest_wiley%3E3118516579%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118516579&rft_id=info:pmid/&rfr_iscdi=true |