Evolutionary algorithm-based hyperparameter tuning of one-dimensional CNNs for diabetes mellitus prediction

Diabetes mellitus, a pervasive and intricate metabolic disorder, disrupts hormonal equilibrium, resulting in elevated glucose levels and widespread organ impact. Timely and precise diagnosis is pivotal for effective disease control. This research introduces an advanced Deep 1D-Convolutional Neural N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolutionary intelligence 2024-10, Vol.17 (5-6), p.3655-3674
Hauptverfasser: El-Hassani, Fatima Zahrae, Belhabib, Fatima, Joudar, Nour-Eddine, Haddouch, Khalid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3674
container_issue 5-6
container_start_page 3655
container_title Evolutionary intelligence
container_volume 17
creator El-Hassani, Fatima Zahrae
Belhabib, Fatima
Joudar, Nour-Eddine
Haddouch, Khalid
description Diabetes mellitus, a pervasive and intricate metabolic disorder, disrupts hormonal equilibrium, resulting in elevated glucose levels and widespread organ impact. Timely and precise diagnosis is pivotal for effective disease control. This research introduces an advanced Deep 1D-Convolutional Neural Network (1DCNN) tailored for diabetes classification, specifically addressing challenges posed by imbalanced datasets and missing values. Through three experiments, encompassing a baseline 1DCNN, hyperparameter optimization(HO) using a Genetic Algorithm (GA), and a Particle Swarm Optimization (PSO) comparison, we aim to identify the most effective model configuration. Our study yields improved results compared to the state-of-the-art. Achieving high precision, recall, and accuracy, along with superior AUC and PR curves, our research significantly contributes to the refinement of diabetes prediction models, fostering enhanced disease comprehension and control.
doi_str_mv 10.1007/s12065-024-00950-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3118467082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118467082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-1a06601d86458c84f45183562ec17e8697dfa57042ffa7906f16392f757214543</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMHT-SJarKQ6rKBtaWm9itSxIHO0Hq35MSBDtWM4t77owOQtcUbimAukuUgRQEGCcAhQCiTtCM5pITUVB1-rtDcY4uUtoDSAaKz9D78jPUQ-9Da-IBm3obou93DdmYZCu8O3Q2diaaxvY24n5ofbvFweHQWlL5xrbpSNZ4sV4n7ELElTebMZtwY-va90PCXbSVL48XLtGZM3WyVz9zjt4elq-LJ7J6eXxe3K9IyQB6Qg1ICbQaPxZ5mXPHBc0zIZktqbK5LFTljFDAmXNGFSAdlVnBnBKKUS54Nkc3U28Xw8dgU6_3YYjjm0lnlOZcKsjZmGJTqowhpWid7qJvRguagj5K1ZNUPUrV31K1GqFsgtIYbrc2_lX_Q30BOht6gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118467082</pqid></control><display><type>article</type><title>Evolutionary algorithm-based hyperparameter tuning of one-dimensional CNNs for diabetes mellitus prediction</title><source>Springer Nature - Complete Springer Journals</source><creator>El-Hassani, Fatima Zahrae ; Belhabib, Fatima ; Joudar, Nour-Eddine ; Haddouch, Khalid</creator><creatorcontrib>El-Hassani, Fatima Zahrae ; Belhabib, Fatima ; Joudar, Nour-Eddine ; Haddouch, Khalid</creatorcontrib><description>Diabetes mellitus, a pervasive and intricate metabolic disorder, disrupts hormonal equilibrium, resulting in elevated glucose levels and widespread organ impact. Timely and precise diagnosis is pivotal for effective disease control. This research introduces an advanced Deep 1D-Convolutional Neural Network (1DCNN) tailored for diabetes classification, specifically addressing challenges posed by imbalanced datasets and missing values. Through three experiments, encompassing a baseline 1DCNN, hyperparameter optimization(HO) using a Genetic Algorithm (GA), and a Particle Swarm Optimization (PSO) comparison, we aim to identify the most effective model configuration. Our study yields improved results compared to the state-of-the-art. Achieving high precision, recall, and accuracy, along with superior AUC and PR curves, our research significantly contributes to the refinement of diabetes prediction models, fostering enhanced disease comprehension and control.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-024-00950-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Artificial Intelligence ; Artificial neural networks ; Bioinformatics ; Control ; Diabetes mellitus ; Disease control ; Engineering ; Evolutionary algorithms ; Genetic algorithms ; Mathematical and Computational Engineering ; Mechatronics ; Metabolic disorders ; Particle swarm optimization ; Prediction models ; Research Paper ; Robotics ; Statistical Physics and Dynamical Systems</subject><ispartof>Evolutionary intelligence, 2024-10, Vol.17 (5-6), p.3655-3674</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-1a06601d86458c84f45183562ec17e8697dfa57042ffa7906f16392f757214543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12065-024-00950-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12065-024-00950-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>El-Hassani, Fatima Zahrae</creatorcontrib><creatorcontrib>Belhabib, Fatima</creatorcontrib><creatorcontrib>Joudar, Nour-Eddine</creatorcontrib><creatorcontrib>Haddouch, Khalid</creatorcontrib><title>Evolutionary algorithm-based hyperparameter tuning of one-dimensional CNNs for diabetes mellitus prediction</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>Diabetes mellitus, a pervasive and intricate metabolic disorder, disrupts hormonal equilibrium, resulting in elevated glucose levels and widespread organ impact. Timely and precise diagnosis is pivotal for effective disease control. This research introduces an advanced Deep 1D-Convolutional Neural Network (1DCNN) tailored for diabetes classification, specifically addressing challenges posed by imbalanced datasets and missing values. Through three experiments, encompassing a baseline 1DCNN, hyperparameter optimization(HO) using a Genetic Algorithm (GA), and a Particle Swarm Optimization (PSO) comparison, we aim to identify the most effective model configuration. Our study yields improved results compared to the state-of-the-art. Achieving high precision, recall, and accuracy, along with superior AUC and PR curves, our research significantly contributes to the refinement of diabetes prediction models, fostering enhanced disease comprehension and control.</description><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Bioinformatics</subject><subject>Control</subject><subject>Diabetes mellitus</subject><subject>Disease control</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Metabolic disorders</subject><subject>Particle swarm optimization</subject><subject>Prediction models</subject><subject>Research Paper</subject><subject>Robotics</subject><subject>Statistical Physics and Dynamical Systems</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMHT-SJarKQ6rKBtaWm9itSxIHO0Hq35MSBDtWM4t77owOQtcUbimAukuUgRQEGCcAhQCiTtCM5pITUVB1-rtDcY4uUtoDSAaKz9D78jPUQ-9Da-IBm3obou93DdmYZCu8O3Q2diaaxvY24n5ofbvFweHQWlL5xrbpSNZ4sV4n7ELElTebMZtwY-va90PCXbSVL48XLtGZM3WyVz9zjt4elq-LJ7J6eXxe3K9IyQB6Qg1ICbQaPxZ5mXPHBc0zIZktqbK5LFTljFDAmXNGFSAdlVnBnBKKUS54Nkc3U28Xw8dgU6_3YYjjm0lnlOZcKsjZmGJTqowhpWid7qJvRguagj5K1ZNUPUrV31K1GqFsgtIYbrc2_lX_Q30BOht6gw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>El-Hassani, Fatima Zahrae</creator><creator>Belhabib, Fatima</creator><creator>Joudar, Nour-Eddine</creator><creator>Haddouch, Khalid</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Evolutionary algorithm-based hyperparameter tuning of one-dimensional CNNs for diabetes mellitus prediction</title><author>El-Hassani, Fatima Zahrae ; Belhabib, Fatima ; Joudar, Nour-Eddine ; Haddouch, Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-1a06601d86458c84f45183562ec17e8697dfa57042ffa7906f16392f757214543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Bioinformatics</topic><topic>Control</topic><topic>Diabetes mellitus</topic><topic>Disease control</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Metabolic disorders</topic><topic>Particle swarm optimization</topic><topic>Prediction models</topic><topic>Research Paper</topic><topic>Robotics</topic><topic>Statistical Physics and Dynamical Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Hassani, Fatima Zahrae</creatorcontrib><creatorcontrib>Belhabib, Fatima</creatorcontrib><creatorcontrib>Joudar, Nour-Eddine</creatorcontrib><creatorcontrib>Haddouch, Khalid</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Hassani, Fatima Zahrae</au><au>Belhabib, Fatima</au><au>Joudar, Nour-Eddine</au><au>Haddouch, Khalid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary algorithm-based hyperparameter tuning of one-dimensional CNNs for diabetes mellitus prediction</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>17</volume><issue>5-6</issue><spage>3655</spage><epage>3674</epage><pages>3655-3674</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>Diabetes mellitus, a pervasive and intricate metabolic disorder, disrupts hormonal equilibrium, resulting in elevated glucose levels and widespread organ impact. Timely and precise diagnosis is pivotal for effective disease control. This research introduces an advanced Deep 1D-Convolutional Neural Network (1DCNN) tailored for diabetes classification, specifically addressing challenges posed by imbalanced datasets and missing values. Through three experiments, encompassing a baseline 1DCNN, hyperparameter optimization(HO) using a Genetic Algorithm (GA), and a Particle Swarm Optimization (PSO) comparison, we aim to identify the most effective model configuration. Our study yields improved results compared to the state-of-the-art. Achieving high precision, recall, and accuracy, along with superior AUC and PR curves, our research significantly contributes to the refinement of diabetes prediction models, fostering enhanced disease comprehension and control.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-024-00950-7</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1864-5909
ispartof Evolutionary intelligence, 2024-10, Vol.17 (5-6), p.3655-3674
issn 1864-5909
1864-5917
language eng
recordid cdi_proquest_journals_3118467082
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Artificial Intelligence
Artificial neural networks
Bioinformatics
Control
Diabetes mellitus
Disease control
Engineering
Evolutionary algorithms
Genetic algorithms
Mathematical and Computational Engineering
Mechatronics
Metabolic disorders
Particle swarm optimization
Prediction models
Research Paper
Robotics
Statistical Physics and Dynamical Systems
title Evolutionary algorithm-based hyperparameter tuning of one-dimensional CNNs for diabetes mellitus prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20algorithm-based%20hyperparameter%20tuning%20of%20one-dimensional%20CNNs%20for%20diabetes%20mellitus%20prediction&rft.jtitle=Evolutionary%20intelligence&rft.au=El-Hassani,%20Fatima%20Zahrae&rft.date=2024-10-01&rft.volume=17&rft.issue=5-6&rft.spage=3655&rft.epage=3674&rft.pages=3655-3674&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-024-00950-7&rft_dat=%3Cproquest_cross%3E3118467082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118467082&rft_id=info:pmid/&rfr_iscdi=true