Evolutionary algorithm-based hyperparameter tuning of one-dimensional CNNs for diabetes mellitus prediction
Diabetes mellitus, a pervasive and intricate metabolic disorder, disrupts hormonal equilibrium, resulting in elevated glucose levels and widespread organ impact. Timely and precise diagnosis is pivotal for effective disease control. This research introduces an advanced Deep 1D-Convolutional Neural N...
Gespeichert in:
Veröffentlicht in: | Evolutionary intelligence 2024-10, Vol.17 (5-6), p.3655-3674 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3674 |
---|---|
container_issue | 5-6 |
container_start_page | 3655 |
container_title | Evolutionary intelligence |
container_volume | 17 |
creator | El-Hassani, Fatima Zahrae Belhabib, Fatima Joudar, Nour-Eddine Haddouch, Khalid |
description | Diabetes mellitus, a pervasive and intricate metabolic disorder, disrupts hormonal equilibrium, resulting in elevated glucose levels and widespread organ impact. Timely and precise diagnosis is pivotal for effective disease control. This research introduces an advanced Deep 1D-Convolutional Neural Network (1DCNN) tailored for diabetes classification, specifically addressing challenges posed by imbalanced datasets and missing values. Through three experiments, encompassing a baseline 1DCNN, hyperparameter optimization(HO) using a Genetic Algorithm (GA), and a Particle Swarm Optimization (PSO) comparison, we aim to identify the most effective model configuration. Our study yields improved results compared to the state-of-the-art. Achieving high precision, recall, and accuracy, along with superior AUC and PR curves, our research significantly contributes to the refinement of diabetes prediction models, fostering enhanced disease comprehension and control. |
doi_str_mv | 10.1007/s12065-024-00950-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3118467082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118467082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-1a06601d86458c84f45183562ec17e8697dfa57042ffa7906f16392f757214543</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMHT-SJarKQ6rKBtaWm9itSxIHO0Hq35MSBDtWM4t77owOQtcUbimAukuUgRQEGCcAhQCiTtCM5pITUVB1-rtDcY4uUtoDSAaKz9D78jPUQ-9Da-IBm3obou93DdmYZCu8O3Q2diaaxvY24n5ofbvFweHQWlL5xrbpSNZ4sV4n7ELElTebMZtwY-va90PCXbSVL48XLtGZM3WyVz9zjt4elq-LJ7J6eXxe3K9IyQB6Qg1ICbQaPxZ5mXPHBc0zIZktqbK5LFTljFDAmXNGFSAdlVnBnBKKUS54Nkc3U28Xw8dgU6_3YYjjm0lnlOZcKsjZmGJTqowhpWid7qJvRguagj5K1ZNUPUrV31K1GqFsgtIYbrc2_lX_Q30BOht6gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118467082</pqid></control><display><type>article</type><title>Evolutionary algorithm-based hyperparameter tuning of one-dimensional CNNs for diabetes mellitus prediction</title><source>Springer Nature - Complete Springer Journals</source><creator>El-Hassani, Fatima Zahrae ; Belhabib, Fatima ; Joudar, Nour-Eddine ; Haddouch, Khalid</creator><creatorcontrib>El-Hassani, Fatima Zahrae ; Belhabib, Fatima ; Joudar, Nour-Eddine ; Haddouch, Khalid</creatorcontrib><description>Diabetes mellitus, a pervasive and intricate metabolic disorder, disrupts hormonal equilibrium, resulting in elevated glucose levels and widespread organ impact. Timely and precise diagnosis is pivotal for effective disease control. This research introduces an advanced Deep 1D-Convolutional Neural Network (1DCNN) tailored for diabetes classification, specifically addressing challenges posed by imbalanced datasets and missing values. Through three experiments, encompassing a baseline 1DCNN, hyperparameter optimization(HO) using a Genetic Algorithm (GA), and a Particle Swarm Optimization (PSO) comparison, we aim to identify the most effective model configuration. Our study yields improved results compared to the state-of-the-art. Achieving high precision, recall, and accuracy, along with superior AUC and PR curves, our research significantly contributes to the refinement of diabetes prediction models, fostering enhanced disease comprehension and control.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-024-00950-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Artificial Intelligence ; Artificial neural networks ; Bioinformatics ; Control ; Diabetes mellitus ; Disease control ; Engineering ; Evolutionary algorithms ; Genetic algorithms ; Mathematical and Computational Engineering ; Mechatronics ; Metabolic disorders ; Particle swarm optimization ; Prediction models ; Research Paper ; Robotics ; Statistical Physics and Dynamical Systems</subject><ispartof>Evolutionary intelligence, 2024-10, Vol.17 (5-6), p.3655-3674</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-1a06601d86458c84f45183562ec17e8697dfa57042ffa7906f16392f757214543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12065-024-00950-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12065-024-00950-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>El-Hassani, Fatima Zahrae</creatorcontrib><creatorcontrib>Belhabib, Fatima</creatorcontrib><creatorcontrib>Joudar, Nour-Eddine</creatorcontrib><creatorcontrib>Haddouch, Khalid</creatorcontrib><title>Evolutionary algorithm-based hyperparameter tuning of one-dimensional CNNs for diabetes mellitus prediction</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>Diabetes mellitus, a pervasive and intricate metabolic disorder, disrupts hormonal equilibrium, resulting in elevated glucose levels and widespread organ impact. Timely and precise diagnosis is pivotal for effective disease control. This research introduces an advanced Deep 1D-Convolutional Neural Network (1DCNN) tailored for diabetes classification, specifically addressing challenges posed by imbalanced datasets and missing values. Through three experiments, encompassing a baseline 1DCNN, hyperparameter optimization(HO) using a Genetic Algorithm (GA), and a Particle Swarm Optimization (PSO) comparison, we aim to identify the most effective model configuration. Our study yields improved results compared to the state-of-the-art. Achieving high precision, recall, and accuracy, along with superior AUC and PR curves, our research significantly contributes to the refinement of diabetes prediction models, fostering enhanced disease comprehension and control.</description><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Bioinformatics</subject><subject>Control</subject><subject>Diabetes mellitus</subject><subject>Disease control</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Metabolic disorders</subject><subject>Particle swarm optimization</subject><subject>Prediction models</subject><subject>Research Paper</subject><subject>Robotics</subject><subject>Statistical Physics and Dynamical Systems</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMHT-SJarKQ6rKBtaWm9itSxIHO0Hq35MSBDtWM4t77owOQtcUbimAukuUgRQEGCcAhQCiTtCM5pITUVB1-rtDcY4uUtoDSAaKz9D78jPUQ-9Da-IBm3obou93DdmYZCu8O3Q2diaaxvY24n5ofbvFweHQWlL5xrbpSNZ4sV4n7ELElTebMZtwY-va90PCXbSVL48XLtGZM3WyVz9zjt4elq-LJ7J6eXxe3K9IyQB6Qg1ICbQaPxZ5mXPHBc0zIZktqbK5LFTljFDAmXNGFSAdlVnBnBKKUS54Nkc3U28Xw8dgU6_3YYjjm0lnlOZcKsjZmGJTqowhpWid7qJvRguagj5K1ZNUPUrV31K1GqFsgtIYbrc2_lX_Q30BOht6gw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>El-Hassani, Fatima Zahrae</creator><creator>Belhabib, Fatima</creator><creator>Joudar, Nour-Eddine</creator><creator>Haddouch, Khalid</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Evolutionary algorithm-based hyperparameter tuning of one-dimensional CNNs for diabetes mellitus prediction</title><author>El-Hassani, Fatima Zahrae ; Belhabib, Fatima ; Joudar, Nour-Eddine ; Haddouch, Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-1a06601d86458c84f45183562ec17e8697dfa57042ffa7906f16392f757214543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Bioinformatics</topic><topic>Control</topic><topic>Diabetes mellitus</topic><topic>Disease control</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Metabolic disorders</topic><topic>Particle swarm optimization</topic><topic>Prediction models</topic><topic>Research Paper</topic><topic>Robotics</topic><topic>Statistical Physics and Dynamical Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Hassani, Fatima Zahrae</creatorcontrib><creatorcontrib>Belhabib, Fatima</creatorcontrib><creatorcontrib>Joudar, Nour-Eddine</creatorcontrib><creatorcontrib>Haddouch, Khalid</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Hassani, Fatima Zahrae</au><au>Belhabib, Fatima</au><au>Joudar, Nour-Eddine</au><au>Haddouch, Khalid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary algorithm-based hyperparameter tuning of one-dimensional CNNs for diabetes mellitus prediction</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>17</volume><issue>5-6</issue><spage>3655</spage><epage>3674</epage><pages>3655-3674</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>Diabetes mellitus, a pervasive and intricate metabolic disorder, disrupts hormonal equilibrium, resulting in elevated glucose levels and widespread organ impact. Timely and precise diagnosis is pivotal for effective disease control. This research introduces an advanced Deep 1D-Convolutional Neural Network (1DCNN) tailored for diabetes classification, specifically addressing challenges posed by imbalanced datasets and missing values. Through three experiments, encompassing a baseline 1DCNN, hyperparameter optimization(HO) using a Genetic Algorithm (GA), and a Particle Swarm Optimization (PSO) comparison, we aim to identify the most effective model configuration. Our study yields improved results compared to the state-of-the-art. Achieving high precision, recall, and accuracy, along with superior AUC and PR curves, our research significantly contributes to the refinement of diabetes prediction models, fostering enhanced disease comprehension and control.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-024-00950-7</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5909 |
ispartof | Evolutionary intelligence, 2024-10, Vol.17 (5-6), p.3655-3674 |
issn | 1864-5909 1864-5917 |
language | eng |
recordid | cdi_proquest_journals_3118467082 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Artificial Intelligence Artificial neural networks Bioinformatics Control Diabetes mellitus Disease control Engineering Evolutionary algorithms Genetic algorithms Mathematical and Computational Engineering Mechatronics Metabolic disorders Particle swarm optimization Prediction models Research Paper Robotics Statistical Physics and Dynamical Systems |
title | Evolutionary algorithm-based hyperparameter tuning of one-dimensional CNNs for diabetes mellitus prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20algorithm-based%20hyperparameter%20tuning%20of%20one-dimensional%20CNNs%20for%20diabetes%20mellitus%20prediction&rft.jtitle=Evolutionary%20intelligence&rft.au=El-Hassani,%20Fatima%20Zahrae&rft.date=2024-10-01&rft.volume=17&rft.issue=5-6&rft.spage=3655&rft.epage=3674&rft.pages=3655-3674&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-024-00950-7&rft_dat=%3Cproquest_cross%3E3118467082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118467082&rft_id=info:pmid/&rfr_iscdi=true |