Pyrochlore La2Zr2–xNixO7 anodes for direct ammonia solid oxide fuel cells
Developing efficient anode catalysts for direct ammonia solid oxide fuel cells (NH 3 -SOFCs) under intermediate-temperatures is of great importance, in support of hydrogen economy via ammonia utilization. In the present work, the pyrochlore-type La 2 Zr 2− x Ni x O 7+ δ (LZN x , x = 0, 0.02, 0.05, 0...
Gespeichert in:
Veröffentlicht in: | Frontiers in Energy 2024-10, Vol.18 (5), p.699-711 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 711 |
---|---|
container_issue | 5 |
container_start_page | 699 |
container_title | Frontiers in Energy |
container_volume | 18 |
creator | Yang, Shiqing Gao, Yijie Wang, Xinmin Zhong, Fulan Fang, Huihuang Luo, Yu Jiang, Lilong |
description | Developing efficient anode catalysts for direct ammonia solid oxide fuel cells (NH
3
-SOFCs) under intermediate-temperatures is of great importance, in support of hydrogen economy via ammonia utilization. In the present work, the pyrochlore-type La
2
Zr
2−
x
Ni
x
O
7+
δ
(LZN
x
,
x
= 0, 0.02, 0.05, 0.08, 0.10) oxides were synthesized as potential anode catalysts of NH
3
-SOFCs due to the abundant Frankel defect that contributes to the good conductivity and oxygen ion mobility capacity. The effects of different content of Ni
2+
doping on the crystal structure, surface morphology, thermal matching with YSZ (Yttria-stabilized zirconia), conductivity, and electrochemical performance of pyrochlore oxides were examined using different characterization techniques. The findings indicate that the LZN
x
oxide behaves as an n-type semiconductor and exhibits an excellent high-temperature chemical compatibility and thermal matching with the YSZ electrolyte. Furthermore, LZN
0.05
exhibits the smallest conductive band potential and bandgap, making it have a higher power density as anode material for NH
3
-SOFCs compared to other anodes. As a result, the maximum power density of the LZN
0.05
-40YSZ composite anode reaches 100.86 mW/cm
2
at 800 °C, which is 1.8 times greater than that of NiO-based NH
3
-SOFCs (56.75 mW/cm
2
) under identical flow rate and temperature conditions. The extended durability indicates that the NH
3
-SOFCs utilizing the LZN
0.05
-40YSZ composite anode exhibits a negligible voltage degradation following uninterrupted operation at 800 °C for 100 h. |
doi_str_mv | 10.1007/s11708-024-0948-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3118467070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118467070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-d44085c1ca09203f334acaddf38c4b4e48ad85747a207a7502a7b6507e5768423</originalsourceid><addsrcrecordid>eNp1kL9OwzAQhy0EElXpA7BZYjbcOU7sjKjin4goAywslms7kCqNi91K7cY78IY8CakCYmK6G77f704fIacI5wggLxKiBMWACwalUIwfkBGHMmdYlOrwd5eAx2SS0gIAECEHyUfk_nEXg31rQ_S0Mvwl8q-Pz-1Ds51JarrgfKJ1iNQ10ds1Nctl6BpDU2gbR8O2cZ7WG99S69s2nZCj2rTJT37mmDxfXz1Nb1k1u7mbXlbMYqnWzAkBKrdoDZQcsjrLhLHGuTpTVsyFF8o4lUshDQdpZA7cyHnRv-tzWSjBszE5G3pXMbxvfFrrRdjErj-pM0QlCgkSegoHysaQUvS1XsVmaeJOI-i9Nj1o0702vdem9818yKSe7V59_Gv-P_QNF7Rupw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118467070</pqid></control><display><type>article</type><title>Pyrochlore La2Zr2–xNixO7 anodes for direct ammonia solid oxide fuel cells</title><source>SpringerLink Journals</source><creator>Yang, Shiqing ; Gao, Yijie ; Wang, Xinmin ; Zhong, Fulan ; Fang, Huihuang ; Luo, Yu ; Jiang, Lilong</creator><creatorcontrib>Yang, Shiqing ; Gao, Yijie ; Wang, Xinmin ; Zhong, Fulan ; Fang, Huihuang ; Luo, Yu ; Jiang, Lilong</creatorcontrib><description>Developing efficient anode catalysts for direct ammonia solid oxide fuel cells (NH
3
-SOFCs) under intermediate-temperatures is of great importance, in support of hydrogen economy via ammonia utilization. In the present work, the pyrochlore-type La
2
Zr
2−
x
Ni
x
O
7+
δ
(LZN
x
,
x
= 0, 0.02, 0.05, 0.08, 0.10) oxides were synthesized as potential anode catalysts of NH
3
-SOFCs due to the abundant Frankel defect that contributes to the good conductivity and oxygen ion mobility capacity. The effects of different content of Ni
2+
doping on the crystal structure, surface morphology, thermal matching with YSZ (Yttria-stabilized zirconia), conductivity, and electrochemical performance of pyrochlore oxides were examined using different characterization techniques. The findings indicate that the LZN
x
oxide behaves as an n-type semiconductor and exhibits an excellent high-temperature chemical compatibility and thermal matching with the YSZ electrolyte. Furthermore, LZN
0.05
exhibits the smallest conductive band potential and bandgap, making it have a higher power density as anode material for NH
3
-SOFCs compared to other anodes. As a result, the maximum power density of the LZN
0.05
-40YSZ composite anode reaches 100.86 mW/cm
2
at 800 °C, which is 1.8 times greater than that of NiO-based NH
3
-SOFCs (56.75 mW/cm
2
) under identical flow rate and temperature conditions. The extended durability indicates that the NH
3
-SOFCs utilizing the LZN
0.05
-40YSZ composite anode exhibits a negligible voltage degradation following uninterrupted operation at 800 °C for 100 h.</description><identifier>ISSN: 2095-1701</identifier><identifier>EISSN: 2095-1698</identifier><identifier>DOI: 10.1007/s11708-024-0948-2</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Ammonia ; Anodes ; Catalysts ; Chemical compatibility ; Chemical synthesis ; Conductivity ; Crystal defects ; Crystal structure ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrolytic cells ; Electrons ; Energy ; Energy Systems ; Flow rates ; Fuel cells ; Fuel technology ; High temperature ; Ionic mobility ; Matching ; Maximum power density ; N-type semiconductors ; Oxygen ions ; Pyrochlores ; Research Article ; Solid oxide fuel cells ; Yttria-stabilized zirconia ; Yttrium oxide ; Zirconia</subject><ispartof>Frontiers in Energy, 2024-10, Vol.18 (5), p.699-711</ispartof><rights>Higher Education Press 2024</rights><rights>Higher Education Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-d44085c1ca09203f334acaddf38c4b4e48ad85747a207a7502a7b6507e5768423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11708-024-0948-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11708-024-0948-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yang, Shiqing</creatorcontrib><creatorcontrib>Gao, Yijie</creatorcontrib><creatorcontrib>Wang, Xinmin</creatorcontrib><creatorcontrib>Zhong, Fulan</creatorcontrib><creatorcontrib>Fang, Huihuang</creatorcontrib><creatorcontrib>Luo, Yu</creatorcontrib><creatorcontrib>Jiang, Lilong</creatorcontrib><title>Pyrochlore La2Zr2–xNixO7 anodes for direct ammonia solid oxide fuel cells</title><title>Frontiers in Energy</title><addtitle>Front. Energy</addtitle><description>Developing efficient anode catalysts for direct ammonia solid oxide fuel cells (NH
3
-SOFCs) under intermediate-temperatures is of great importance, in support of hydrogen economy via ammonia utilization. In the present work, the pyrochlore-type La
2
Zr
2−
x
Ni
x
O
7+
δ
(LZN
x
,
x
= 0, 0.02, 0.05, 0.08, 0.10) oxides were synthesized as potential anode catalysts of NH
3
-SOFCs due to the abundant Frankel defect that contributes to the good conductivity and oxygen ion mobility capacity. The effects of different content of Ni
2+
doping on the crystal structure, surface morphology, thermal matching with YSZ (Yttria-stabilized zirconia), conductivity, and electrochemical performance of pyrochlore oxides were examined using different characterization techniques. The findings indicate that the LZN
x
oxide behaves as an n-type semiconductor and exhibits an excellent high-temperature chemical compatibility and thermal matching with the YSZ electrolyte. Furthermore, LZN
0.05
exhibits the smallest conductive band potential and bandgap, making it have a higher power density as anode material for NH
3
-SOFCs compared to other anodes. As a result, the maximum power density of the LZN
0.05
-40YSZ composite anode reaches 100.86 mW/cm
2
at 800 °C, which is 1.8 times greater than that of NiO-based NH
3
-SOFCs (56.75 mW/cm
2
) under identical flow rate and temperature conditions. The extended durability indicates that the NH
3
-SOFCs utilizing the LZN
0.05
-40YSZ composite anode exhibits a negligible voltage degradation following uninterrupted operation at 800 °C for 100 h.</description><subject>Ammonia</subject><subject>Anodes</subject><subject>Catalysts</subject><subject>Chemical compatibility</subject><subject>Chemical synthesis</subject><subject>Conductivity</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrolytic cells</subject><subject>Electrons</subject><subject>Energy</subject><subject>Energy Systems</subject><subject>Flow rates</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>High temperature</subject><subject>Ionic mobility</subject><subject>Matching</subject><subject>Maximum power density</subject><subject>N-type semiconductors</subject><subject>Oxygen ions</subject><subject>Pyrochlores</subject><subject>Research Article</subject><subject>Solid oxide fuel cells</subject><subject>Yttria-stabilized zirconia</subject><subject>Yttrium oxide</subject><subject>Zirconia</subject><issn>2095-1701</issn><issn>2095-1698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQhy0EElXpA7BZYjbcOU7sjKjin4goAywslms7kCqNi91K7cY78IY8CakCYmK6G77f704fIacI5wggLxKiBMWACwalUIwfkBGHMmdYlOrwd5eAx2SS0gIAECEHyUfk_nEXg31rQ_S0Mvwl8q-Pz-1Ds51JarrgfKJ1iNQ10ds1Nctl6BpDU2gbR8O2cZ7WG99S69s2nZCj2rTJT37mmDxfXz1Nb1k1u7mbXlbMYqnWzAkBKrdoDZQcsjrLhLHGuTpTVsyFF8o4lUshDQdpZA7cyHnRv-tzWSjBszE5G3pXMbxvfFrrRdjErj-pM0QlCgkSegoHysaQUvS1XsVmaeJOI-i9Nj1o0702vdem9818yKSe7V59_Gv-P_QNF7Rupw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Yang, Shiqing</creator><creator>Gao, Yijie</creator><creator>Wang, Xinmin</creator><creator>Zhong, Fulan</creator><creator>Fang, Huihuang</creator><creator>Luo, Yu</creator><creator>Jiang, Lilong</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20241001</creationdate><title>Pyrochlore La2Zr2–xNixO7 anodes for direct ammonia solid oxide fuel cells</title><author>Yang, Shiqing ; Gao, Yijie ; Wang, Xinmin ; Zhong, Fulan ; Fang, Huihuang ; Luo, Yu ; Jiang, Lilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-d44085c1ca09203f334acaddf38c4b4e48ad85747a207a7502a7b6507e5768423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonia</topic><topic>Anodes</topic><topic>Catalysts</topic><topic>Chemical compatibility</topic><topic>Chemical synthesis</topic><topic>Conductivity</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrolytic cells</topic><topic>Electrons</topic><topic>Energy</topic><topic>Energy Systems</topic><topic>Flow rates</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>High temperature</topic><topic>Ionic mobility</topic><topic>Matching</topic><topic>Maximum power density</topic><topic>N-type semiconductors</topic><topic>Oxygen ions</topic><topic>Pyrochlores</topic><topic>Research Article</topic><topic>Solid oxide fuel cells</topic><topic>Yttria-stabilized zirconia</topic><topic>Yttrium oxide</topic><topic>Zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shiqing</creatorcontrib><creatorcontrib>Gao, Yijie</creatorcontrib><creatorcontrib>Wang, Xinmin</creatorcontrib><creatorcontrib>Zhong, Fulan</creatorcontrib><creatorcontrib>Fang, Huihuang</creatorcontrib><creatorcontrib>Luo, Yu</creatorcontrib><creatorcontrib>Jiang, Lilong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Frontiers in Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Shiqing</au><au>Gao, Yijie</au><au>Wang, Xinmin</au><au>Zhong, Fulan</au><au>Fang, Huihuang</au><au>Luo, Yu</au><au>Jiang, Lilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyrochlore La2Zr2–xNixO7 anodes for direct ammonia solid oxide fuel cells</atitle><jtitle>Frontiers in Energy</jtitle><stitle>Front. Energy</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>18</volume><issue>5</issue><spage>699</spage><epage>711</epage><pages>699-711</pages><issn>2095-1701</issn><eissn>2095-1698</eissn><abstract>Developing efficient anode catalysts for direct ammonia solid oxide fuel cells (NH
3
-SOFCs) under intermediate-temperatures is of great importance, in support of hydrogen economy via ammonia utilization. In the present work, the pyrochlore-type La
2
Zr
2−
x
Ni
x
O
7+
δ
(LZN
x
,
x
= 0, 0.02, 0.05, 0.08, 0.10) oxides were synthesized as potential anode catalysts of NH
3
-SOFCs due to the abundant Frankel defect that contributes to the good conductivity and oxygen ion mobility capacity. The effects of different content of Ni
2+
doping on the crystal structure, surface morphology, thermal matching with YSZ (Yttria-stabilized zirconia), conductivity, and electrochemical performance of pyrochlore oxides were examined using different characterization techniques. The findings indicate that the LZN
x
oxide behaves as an n-type semiconductor and exhibits an excellent high-temperature chemical compatibility and thermal matching with the YSZ electrolyte. Furthermore, LZN
0.05
exhibits the smallest conductive band potential and bandgap, making it have a higher power density as anode material for NH
3
-SOFCs compared to other anodes. As a result, the maximum power density of the LZN
0.05
-40YSZ composite anode reaches 100.86 mW/cm
2
at 800 °C, which is 1.8 times greater than that of NiO-based NH
3
-SOFCs (56.75 mW/cm
2
) under identical flow rate and temperature conditions. The extended durability indicates that the NH
3
-SOFCs utilizing the LZN
0.05
-40YSZ composite anode exhibits a negligible voltage degradation following uninterrupted operation at 800 °C for 100 h.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11708-024-0948-2</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-1701 |
ispartof | Frontiers in Energy, 2024-10, Vol.18 (5), p.699-711 |
issn | 2095-1701 2095-1698 |
language | eng |
recordid | cdi_proquest_journals_3118467070 |
source | SpringerLink Journals |
subjects | Ammonia Anodes Catalysts Chemical compatibility Chemical synthesis Conductivity Crystal defects Crystal structure Electrochemical analysis Electrochemistry Electrode materials Electrolytic cells Electrons Energy Energy Systems Flow rates Fuel cells Fuel technology High temperature Ionic mobility Matching Maximum power density N-type semiconductors Oxygen ions Pyrochlores Research Article Solid oxide fuel cells Yttria-stabilized zirconia Yttrium oxide Zirconia |
title | Pyrochlore La2Zr2–xNixO7 anodes for direct ammonia solid oxide fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyrochlore%20La2Zr2%E2%80%93xNixO7%20anodes%20for%20direct%20ammonia%20solid%20oxide%20fuel%20cells&rft.jtitle=Frontiers%20in%20Energy&rft.au=Yang,%20Shiqing&rft.date=2024-10-01&rft.volume=18&rft.issue=5&rft.spage=699&rft.epage=711&rft.pages=699-711&rft.issn=2095-1701&rft.eissn=2095-1698&rft_id=info:doi/10.1007/s11708-024-0948-2&rft_dat=%3Cproquest_cross%3E3118467070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118467070&rft_id=info:pmid/&rfr_iscdi=true |