Multivector Contractions Revisited, Part II

The theory of contractions of multivectors, and star duality, was reorganized in a previous article, and here we present some applications. First, we study inner and outer spaces associated to a general multivector M via the equations v ∧ M = 0 and v ⌟ M = 0 . They are then used to analyze special d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied Clifford algebras 2024-11, Vol.34 (5), Article 54
1. Verfasser: Mandolesi, André L. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Advances in applied Clifford algebras
container_volume 34
creator Mandolesi, André L. G.
description The theory of contractions of multivectors, and star duality, was reorganized in a previous article, and here we present some applications. First, we study inner and outer spaces associated to a general multivector M via the equations v ∧ M = 0 and v ⌟ M = 0 . They are then used to analyze special decompositions, factorizations and ‘carvings’ of M , to define generalized grades, and to obtain new simplicity criteria, including a reduced set of Plücker-like relations. We also discuss how contractions are related to supersymmetry, and give formulas for supercommutators of multi-fermion creation and annihilation operators.
doi_str_mv 10.1007/s00006-024-01358-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3118467034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118467034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-c3598dd8eb4c239c53bb4a13c4a853a849645ec7750b486a3884cfea7a2aff13</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWEf_gKuCS42-9CVpupTix8CIIrMPaZpKh7Edk3TAf2-0gjvf5m7uuQ8OIecMrhlAeRMgnaRQcAoMhaJ4QDImJaO8guqQZMCUoiVAdUxOQtgAcImoMnL5NG1jv3c2jj6vxyF6Y2M_DiF_dfs-9NG1V_mL8TFfLk_JUWe2wZ395oKs7-_W9SNdPT8s69sVtQVApBZFpdpWuYbbAisrsGm4YWi5UQKN4pXkwtmyFNBwJQ0qxW3nTGkK03UMF-Rint358WNyIerNOPkhfdTImOKyBOSpVcwt68cQvOv0zvfvxn9qBvrbiZ6d6ORE_zjRmCCcoZDKw5vzf9P_UF8Oh2K8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118467034</pqid></control><display><type>article</type><title>Multivector Contractions Revisited, Part II</title><source>SpringerLink Journals</source><creator>Mandolesi, André L. G.</creator><creatorcontrib>Mandolesi, André L. G.</creatorcontrib><description>The theory of contractions of multivectors, and star duality, was reorganized in a previous article, and here we present some applications. First, we study inner and outer spaces associated to a general multivector M via the equations v ∧ M = 0 and v ⌟ M = 0 . They are then used to analyze special decompositions, factorizations and ‘carvings’ of M , to define generalized grades, and to obtain new simplicity criteria, including a reduced set of Plücker-like relations. We also discuss how contractions are related to supersymmetry, and give formulas for supercommutators of multi-fermion creation and annihilation operators.</description><identifier>ISSN: 0188-7009</identifier><identifier>EISSN: 1661-4909</identifier><identifier>DOI: 10.1007/s00006-024-01358-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Fermions ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Physics ; Physics and Astronomy ; Supersymmetry ; Theoretical</subject><ispartof>Advances in applied Clifford algebras, 2024-11, Vol.34 (5), Article 54</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-c3598dd8eb4c239c53bb4a13c4a853a849645ec7750b486a3884cfea7a2aff13</cites><orcidid>0000-0002-5329-7034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00006-024-01358-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00006-024-01358-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Mandolesi, André L. G.</creatorcontrib><title>Multivector Contractions Revisited, Part II</title><title>Advances in applied Clifford algebras</title><addtitle>Adv. Appl. Clifford Algebras</addtitle><description>The theory of contractions of multivectors, and star duality, was reorganized in a previous article, and here we present some applications. First, we study inner and outer spaces associated to a general multivector M via the equations v ∧ M = 0 and v ⌟ M = 0 . They are then used to analyze special decompositions, factorizations and ‘carvings’ of M , to define generalized grades, and to obtain new simplicity criteria, including a reduced set of Plücker-like relations. We also discuss how contractions are related to supersymmetry, and give formulas for supercommutators of multi-fermion creation and annihilation operators.</description><subject>Applications of Mathematics</subject><subject>Fermions</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Supersymmetry</subject><subject>Theoretical</subject><issn>0188-7009</issn><issn>1661-4909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoWEf_gKuCS42-9CVpupTix8CIIrMPaZpKh7Edk3TAf2-0gjvf5m7uuQ8OIecMrhlAeRMgnaRQcAoMhaJ4QDImJaO8guqQZMCUoiVAdUxOQtgAcImoMnL5NG1jv3c2jj6vxyF6Y2M_DiF_dfs-9NG1V_mL8TFfLk_JUWe2wZ395oKs7-_W9SNdPT8s69sVtQVApBZFpdpWuYbbAisrsGm4YWi5UQKN4pXkwtmyFNBwJQ0qxW3nTGkK03UMF-Rint358WNyIerNOPkhfdTImOKyBOSpVcwt68cQvOv0zvfvxn9qBvrbiZ6d6ORE_zjRmCCcoZDKw5vzf9P_UF8Oh2K8</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Mandolesi, André L. G.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5329-7034</orcidid></search><sort><creationdate>20241101</creationdate><title>Multivector Contractions Revisited, Part II</title><author>Mandolesi, André L. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-c3598dd8eb4c239c53bb4a13c4a853a849645ec7750b486a3884cfea7a2aff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Fermions</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Supersymmetry</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandolesi, André L. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in applied Clifford algebras</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandolesi, André L. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivector Contractions Revisited, Part II</atitle><jtitle>Advances in applied Clifford algebras</jtitle><stitle>Adv. Appl. Clifford Algebras</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><artnum>54</artnum><issn>0188-7009</issn><eissn>1661-4909</eissn><abstract>The theory of contractions of multivectors, and star duality, was reorganized in a previous article, and here we present some applications. First, we study inner and outer spaces associated to a general multivector M via the equations v ∧ M = 0 and v ⌟ M = 0 . They are then used to analyze special decompositions, factorizations and ‘carvings’ of M , to define generalized grades, and to obtain new simplicity criteria, including a reduced set of Plücker-like relations. We also discuss how contractions are related to supersymmetry, and give formulas for supercommutators of multi-fermion creation and annihilation operators.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00006-024-01358-3</doi><orcidid>https://orcid.org/0000-0002-5329-7034</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0188-7009
ispartof Advances in applied Clifford algebras, 2024-11, Vol.34 (5), Article 54
issn 0188-7009
1661-4909
language eng
recordid cdi_proquest_journals_3118467034
source SpringerLink Journals
subjects Applications of Mathematics
Fermions
Mathematical and Computational Physics
Mathematical Methods in Physics
Physics
Physics and Astronomy
Supersymmetry
Theoretical
title Multivector Contractions Revisited, Part II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A51%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivector%20Contractions%20Revisited,%20Part%20II&rft.jtitle=Advances%20in%20applied%20Clifford%20algebras&rft.au=Mandolesi,%20Andr%C3%A9%20L.%20G.&rft.date=2024-11-01&rft.volume=34&rft.issue=5&rft.artnum=54&rft.issn=0188-7009&rft.eissn=1661-4909&rft_id=info:doi/10.1007/s00006-024-01358-3&rft_dat=%3Cproquest_cross%3E3118467034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118467034&rft_id=info:pmid/&rfr_iscdi=true