Enhancing Cerium Oxide Nanoparticle Stability in Diesel–Biodiesel Blends via Alumina Nanoparticle Amalgamation
To reduce the environmental impacts and emissions while maintaining energy efficiency, it is a common practice to blend diesel with biodiesel. However, it can be a challenging task due to the dissimilar specifications of these fuels and the resulting blend may not show the desirable combustion prope...
Gespeichert in:
Veröffentlicht in: | Waste and biomass valorization 2024-11, Vol.15 (11), p.6107-6120 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6120 |
---|---|
container_issue | 11 |
container_start_page | 6107 |
container_title | Waste and biomass valorization |
container_volume | 15 |
creator | Ronaghi, Taha Baghban Fotovat, Farzam Zamzamian, Seyed Amir Hossein |
description | To reduce the environmental impacts and emissions while maintaining energy efficiency, it is a common practice to blend diesel with biodiesel. However, it can be a challenging task due to the dissimilar specifications of these fuels and the resulting blend may not show the desirable combustion properties. These shortcomings can be overcome by adding nanoparticles which significantly enhance the thermophysical properties and combustion characteristics of fuel blends. However, a critical challenge is preserving the stability of these nanoparticles within fuel blends, as they have a high tendency to agglomerate. This study addresses the issue of the poor stability of cerium oxide (ceria) nanoparticles in a fuel blend composed of 80 v% diesel and 20 v% waste cooking oil (WCO)-derived biodiesel. To this end, a novel approach was adopted to amalgamate ceria with alumina nanoparticles using a solvent-based method. The resulting cerium-alumina nanocomposite demonstrated 44% greater stability within a month than the fuel blend containing ceria nanoparticles alone. In comparison to pure biodiesel, the fuel blend incorporating the nanocomposite exhibited a 6 MJ/kg increase in heating value, a 1.5 mm
2
/s reduction in kinematic viscosity, a 100 °C decrease in flash point, an 8 °C decrease in cloud point, and a13 °C reduction in pour point.
Graphical Abstract |
doi_str_mv | 10.1007/s12649-024-02573-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3118466832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118466832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-8f67e6dc3b0da7f55ce7237cf1ec5c7c38310845caea7c7a6ac0b66b018f0c243</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EElXpBVhZYh2w48QOy7aUH6miC0BiZ00cp7hKnGAniO64AzfkJJgGgdiwGM0s3nsz8yF0TMkpJUSceRrz5DwicRIqFSzie2hEMyGimKeP-z9zQg_RxPsNISSmNIuZGKF2YZ_AKmPXeK6d6Wu8ejWFxrdgmxZcZ1Sl8V0HualMt8XG4gujva4-3t5npil2M55V2hYevxjA06qvjYW__mkN1Rpq6Exjj9BBCZXXk-8-Rg-Xi_v5dbRcXd3Mp8tIMcK6KCu50LxQLCcFiDJNlRbhYFVSrVIlFMsYJVmSKtAglAAOiuSc54RmJVFxwsboZMhtXfPca9_JTdM7G1ZKFp5POM9YHFTxoFKu8d7pUrbO1OC2khL5BVcOcGWAK3dwJQ8mNph8ENu1dr_R_7g-AXqMfzM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118466832</pqid></control><display><type>article</type><title>Enhancing Cerium Oxide Nanoparticle Stability in Diesel–Biodiesel Blends via Alumina Nanoparticle Amalgamation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ronaghi, Taha Baghban ; Fotovat, Farzam ; Zamzamian, Seyed Amir Hossein</creator><creatorcontrib>Ronaghi, Taha Baghban ; Fotovat, Farzam ; Zamzamian, Seyed Amir Hossein</creatorcontrib><description>To reduce the environmental impacts and emissions while maintaining energy efficiency, it is a common practice to blend diesel with biodiesel. However, it can be a challenging task due to the dissimilar specifications of these fuels and the resulting blend may not show the desirable combustion properties. These shortcomings can be overcome by adding nanoparticles which significantly enhance the thermophysical properties and combustion characteristics of fuel blends. However, a critical challenge is preserving the stability of these nanoparticles within fuel blends, as they have a high tendency to agglomerate. This study addresses the issue of the poor stability of cerium oxide (ceria) nanoparticles in a fuel blend composed of 80 v% diesel and 20 v% waste cooking oil (WCO)-derived biodiesel. To this end, a novel approach was adopted to amalgamate ceria with alumina nanoparticles using a solvent-based method. The resulting cerium-alumina nanocomposite demonstrated 44% greater stability within a month than the fuel blend containing ceria nanoparticles alone. In comparison to pure biodiesel, the fuel blend incorporating the nanocomposite exhibited a 6 MJ/kg increase in heating value, a 1.5 mm
2
/s reduction in kinematic viscosity, a 100 °C decrease in flash point, an 8 °C decrease in cloud point, and a13 °C reduction in pour point.
Graphical Abstract</description><identifier>ISSN: 1877-2641</identifier><identifier>EISSN: 1877-265X</identifier><identifier>DOI: 10.1007/s12649-024-02573-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aluminum oxide ; Amalgamation ; Biodiesel fuels ; Biofuels ; Calorific value ; Cerium ; Cerium oxides ; Combustion ; Cooking oils ; Diesel ; Diesel fuels ; Energy efficiency ; Engineering ; Environment ; Environmental Engineering/Biotechnology ; Environmental impact ; Flash point ; Industrial Pollution Prevention ; Kinematic viscosity ; Kinematics ; Mixtures ; Nanocomposites ; Nanoparticles ; Original Paper ; Renewable and Green Energy ; Stability ; Thermophysical properties ; Waste Management/Waste Technology</subject><ispartof>Waste and biomass valorization, 2024-11, Vol.15 (11), p.6107-6120</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-8f67e6dc3b0da7f55ce7237cf1ec5c7c38310845caea7c7a6ac0b66b018f0c243</cites><orcidid>0000-0003-0964-2264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12649-024-02573-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12649-024-02573-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ronaghi, Taha Baghban</creatorcontrib><creatorcontrib>Fotovat, Farzam</creatorcontrib><creatorcontrib>Zamzamian, Seyed Amir Hossein</creatorcontrib><title>Enhancing Cerium Oxide Nanoparticle Stability in Diesel–Biodiesel Blends via Alumina Nanoparticle Amalgamation</title><title>Waste and biomass valorization</title><addtitle>Waste Biomass Valor</addtitle><description>To reduce the environmental impacts and emissions while maintaining energy efficiency, it is a common practice to blend diesel with biodiesel. However, it can be a challenging task due to the dissimilar specifications of these fuels and the resulting blend may not show the desirable combustion properties. These shortcomings can be overcome by adding nanoparticles which significantly enhance the thermophysical properties and combustion characteristics of fuel blends. However, a critical challenge is preserving the stability of these nanoparticles within fuel blends, as they have a high tendency to agglomerate. This study addresses the issue of the poor stability of cerium oxide (ceria) nanoparticles in a fuel blend composed of 80 v% diesel and 20 v% waste cooking oil (WCO)-derived biodiesel. To this end, a novel approach was adopted to amalgamate ceria with alumina nanoparticles using a solvent-based method. The resulting cerium-alumina nanocomposite demonstrated 44% greater stability within a month than the fuel blend containing ceria nanoparticles alone. In comparison to pure biodiesel, the fuel blend incorporating the nanocomposite exhibited a 6 MJ/kg increase in heating value, a 1.5 mm
2
/s reduction in kinematic viscosity, a 100 °C decrease in flash point, an 8 °C decrease in cloud point, and a13 °C reduction in pour point.
Graphical Abstract</description><subject>Aluminum oxide</subject><subject>Amalgamation</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Calorific value</subject><subject>Cerium</subject><subject>Cerium oxides</subject><subject>Combustion</subject><subject>Cooking oils</subject><subject>Diesel</subject><subject>Diesel fuels</subject><subject>Energy efficiency</subject><subject>Engineering</subject><subject>Environment</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Environmental impact</subject><subject>Flash point</subject><subject>Industrial Pollution Prevention</subject><subject>Kinematic viscosity</subject><subject>Kinematics</subject><subject>Mixtures</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Original Paper</subject><subject>Renewable and Green Energy</subject><subject>Stability</subject><subject>Thermophysical properties</subject><subject>Waste Management/Waste Technology</subject><issn>1877-2641</issn><issn>1877-265X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EElXpBVhZYh2w48QOy7aUH6miC0BiZ00cp7hKnGAniO64AzfkJJgGgdiwGM0s3nsz8yF0TMkpJUSceRrz5DwicRIqFSzie2hEMyGimKeP-z9zQg_RxPsNISSmNIuZGKF2YZ_AKmPXeK6d6Wu8ejWFxrdgmxZcZ1Sl8V0HualMt8XG4gujva4-3t5npil2M55V2hYevxjA06qvjYW__mkN1Rpq6Exjj9BBCZXXk-8-Rg-Xi_v5dbRcXd3Mp8tIMcK6KCu50LxQLCcFiDJNlRbhYFVSrVIlFMsYJVmSKtAglAAOiuSc54RmJVFxwsboZMhtXfPca9_JTdM7G1ZKFp5POM9YHFTxoFKu8d7pUrbO1OC2khL5BVcOcGWAK3dwJQ8mNph8ENu1dr_R_7g-AXqMfzM</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Ronaghi, Taha Baghban</creator><creator>Fotovat, Farzam</creator><creator>Zamzamian, Seyed Amir Hossein</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0964-2264</orcidid></search><sort><creationdate>20241101</creationdate><title>Enhancing Cerium Oxide Nanoparticle Stability in Diesel–Biodiesel Blends via Alumina Nanoparticle Amalgamation</title><author>Ronaghi, Taha Baghban ; Fotovat, Farzam ; Zamzamian, Seyed Amir Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-8f67e6dc3b0da7f55ce7237cf1ec5c7c38310845caea7c7a6ac0b66b018f0c243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum oxide</topic><topic>Amalgamation</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Calorific value</topic><topic>Cerium</topic><topic>Cerium oxides</topic><topic>Combustion</topic><topic>Cooking oils</topic><topic>Diesel</topic><topic>Diesel fuels</topic><topic>Energy efficiency</topic><topic>Engineering</topic><topic>Environment</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Environmental impact</topic><topic>Flash point</topic><topic>Industrial Pollution Prevention</topic><topic>Kinematic viscosity</topic><topic>Kinematics</topic><topic>Mixtures</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Original Paper</topic><topic>Renewable and Green Energy</topic><topic>Stability</topic><topic>Thermophysical properties</topic><topic>Waste Management/Waste Technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Ronaghi, Taha Baghban</creatorcontrib><creatorcontrib>Fotovat, Farzam</creatorcontrib><creatorcontrib>Zamzamian, Seyed Amir Hossein</creatorcontrib><collection>CrossRef</collection><jtitle>Waste and biomass valorization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ronaghi, Taha Baghban</au><au>Fotovat, Farzam</au><au>Zamzamian, Seyed Amir Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Cerium Oxide Nanoparticle Stability in Diesel–Biodiesel Blends via Alumina Nanoparticle Amalgamation</atitle><jtitle>Waste and biomass valorization</jtitle><stitle>Waste Biomass Valor</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>15</volume><issue>11</issue><spage>6107</spage><epage>6120</epage><pages>6107-6120</pages><issn>1877-2641</issn><eissn>1877-265X</eissn><abstract>To reduce the environmental impacts and emissions while maintaining energy efficiency, it is a common practice to blend diesel with biodiesel. However, it can be a challenging task due to the dissimilar specifications of these fuels and the resulting blend may not show the desirable combustion properties. These shortcomings can be overcome by adding nanoparticles which significantly enhance the thermophysical properties and combustion characteristics of fuel blends. However, a critical challenge is preserving the stability of these nanoparticles within fuel blends, as they have a high tendency to agglomerate. This study addresses the issue of the poor stability of cerium oxide (ceria) nanoparticles in a fuel blend composed of 80 v% diesel and 20 v% waste cooking oil (WCO)-derived biodiesel. To this end, a novel approach was adopted to amalgamate ceria with alumina nanoparticles using a solvent-based method. The resulting cerium-alumina nanocomposite demonstrated 44% greater stability within a month than the fuel blend containing ceria nanoparticles alone. In comparison to pure biodiesel, the fuel blend incorporating the nanocomposite exhibited a 6 MJ/kg increase in heating value, a 1.5 mm
2
/s reduction in kinematic viscosity, a 100 °C decrease in flash point, an 8 °C decrease in cloud point, and a13 °C reduction in pour point.
Graphical Abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12649-024-02573-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0964-2264</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1877-2641 |
ispartof | Waste and biomass valorization, 2024-11, Vol.15 (11), p.6107-6120 |
issn | 1877-2641 1877-265X |
language | eng |
recordid | cdi_proquest_journals_3118466832 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminum oxide Amalgamation Biodiesel fuels Biofuels Calorific value Cerium Cerium oxides Combustion Cooking oils Diesel Diesel fuels Energy efficiency Engineering Environment Environmental Engineering/Biotechnology Environmental impact Flash point Industrial Pollution Prevention Kinematic viscosity Kinematics Mixtures Nanocomposites Nanoparticles Original Paper Renewable and Green Energy Stability Thermophysical properties Waste Management/Waste Technology |
title | Enhancing Cerium Oxide Nanoparticle Stability in Diesel–Biodiesel Blends via Alumina Nanoparticle Amalgamation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Cerium%20Oxide%20Nanoparticle%20Stability%20in%20Diesel%E2%80%93Biodiesel%20Blends%20via%20Alumina%20Nanoparticle%20Amalgamation&rft.jtitle=Waste%20and%20biomass%20valorization&rft.au=Ronaghi,%20Taha%20Baghban&rft.date=2024-11-01&rft.volume=15&rft.issue=11&rft.spage=6107&rft.epage=6120&rft.pages=6107-6120&rft.issn=1877-2641&rft.eissn=1877-265X&rft_id=info:doi/10.1007/s12649-024-02573-6&rft_dat=%3Cproquest_cross%3E3118466832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118466832&rft_id=info:pmid/&rfr_iscdi=true |