Enhancing Cerium Oxide Nanoparticle Stability in Diesel–Biodiesel Blends via Alumina Nanoparticle Amalgamation

To reduce the environmental impacts and emissions while maintaining energy efficiency, it is a common practice to blend diesel with biodiesel. However, it can be a challenging task due to the dissimilar specifications of these fuels and the resulting blend may not show the desirable combustion prope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Waste and biomass valorization 2024-11, Vol.15 (11), p.6107-6120
Hauptverfasser: Ronaghi, Taha Baghban, Fotovat, Farzam, Zamzamian, Seyed Amir Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6120
container_issue 11
container_start_page 6107
container_title Waste and biomass valorization
container_volume 15
creator Ronaghi, Taha Baghban
Fotovat, Farzam
Zamzamian, Seyed Amir Hossein
description To reduce the environmental impacts and emissions while maintaining energy efficiency, it is a common practice to blend diesel with biodiesel. However, it can be a challenging task due to the dissimilar specifications of these fuels and the resulting blend may not show the desirable combustion properties. These shortcomings can be overcome by adding nanoparticles which significantly enhance the thermophysical properties and combustion characteristics of fuel blends. However, a critical challenge is preserving the stability of these nanoparticles within fuel blends, as they have a high tendency to agglomerate. This study addresses the issue of the poor stability of cerium oxide (ceria) nanoparticles in a fuel blend composed of 80 v% diesel and 20 v% waste cooking oil (WCO)-derived biodiesel. To this end, a novel approach was adopted to amalgamate ceria with alumina nanoparticles using a solvent-based method. The resulting cerium-alumina nanocomposite demonstrated 44% greater stability within a month than the fuel blend containing ceria nanoparticles alone. In comparison to pure biodiesel, the fuel blend incorporating the nanocomposite exhibited a 6 MJ/kg increase in heating value, a 1.5 mm 2 /s reduction in kinematic viscosity, a 100 °C decrease in flash point, an 8 °C decrease in cloud point, and a13 °C reduction in pour point. Graphical Abstract
doi_str_mv 10.1007/s12649-024-02573-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3118466832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118466832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-8f67e6dc3b0da7f55ce7237cf1ec5c7c38310845caea7c7a6ac0b66b018f0c243</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EElXpBVhZYh2w48QOy7aUH6miC0BiZ00cp7hKnGAniO64AzfkJJgGgdiwGM0s3nsz8yF0TMkpJUSceRrz5DwicRIqFSzie2hEMyGimKeP-z9zQg_RxPsNISSmNIuZGKF2YZ_AKmPXeK6d6Wu8ejWFxrdgmxZcZ1Sl8V0HualMt8XG4gujva4-3t5npil2M55V2hYevxjA06qvjYW__mkN1Rpq6Exjj9BBCZXXk-8-Rg-Xi_v5dbRcXd3Mp8tIMcK6KCu50LxQLCcFiDJNlRbhYFVSrVIlFMsYJVmSKtAglAAOiuSc54RmJVFxwsboZMhtXfPca9_JTdM7G1ZKFp5POM9YHFTxoFKu8d7pUrbO1OC2khL5BVcOcGWAK3dwJQ8mNph8ENu1dr_R_7g-AXqMfzM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118466832</pqid></control><display><type>article</type><title>Enhancing Cerium Oxide Nanoparticle Stability in Diesel–Biodiesel Blends via Alumina Nanoparticle Amalgamation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ronaghi, Taha Baghban ; Fotovat, Farzam ; Zamzamian, Seyed Amir Hossein</creator><creatorcontrib>Ronaghi, Taha Baghban ; Fotovat, Farzam ; Zamzamian, Seyed Amir Hossein</creatorcontrib><description>To reduce the environmental impacts and emissions while maintaining energy efficiency, it is a common practice to blend diesel with biodiesel. However, it can be a challenging task due to the dissimilar specifications of these fuels and the resulting blend may not show the desirable combustion properties. These shortcomings can be overcome by adding nanoparticles which significantly enhance the thermophysical properties and combustion characteristics of fuel blends. However, a critical challenge is preserving the stability of these nanoparticles within fuel blends, as they have a high tendency to agglomerate. This study addresses the issue of the poor stability of cerium oxide (ceria) nanoparticles in a fuel blend composed of 80 v% diesel and 20 v% waste cooking oil (WCO)-derived biodiesel. To this end, a novel approach was adopted to amalgamate ceria with alumina nanoparticles using a solvent-based method. The resulting cerium-alumina nanocomposite demonstrated 44% greater stability within a month than the fuel blend containing ceria nanoparticles alone. In comparison to pure biodiesel, the fuel blend incorporating the nanocomposite exhibited a 6 MJ/kg increase in heating value, a 1.5 mm 2 /s reduction in kinematic viscosity, a 100 °C decrease in flash point, an 8 °C decrease in cloud point, and a13 °C reduction in pour point. Graphical Abstract</description><identifier>ISSN: 1877-2641</identifier><identifier>EISSN: 1877-265X</identifier><identifier>DOI: 10.1007/s12649-024-02573-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aluminum oxide ; Amalgamation ; Biodiesel fuels ; Biofuels ; Calorific value ; Cerium ; Cerium oxides ; Combustion ; Cooking oils ; Diesel ; Diesel fuels ; Energy efficiency ; Engineering ; Environment ; Environmental Engineering/Biotechnology ; Environmental impact ; Flash point ; Industrial Pollution Prevention ; Kinematic viscosity ; Kinematics ; Mixtures ; Nanocomposites ; Nanoparticles ; Original Paper ; Renewable and Green Energy ; Stability ; Thermophysical properties ; Waste Management/Waste Technology</subject><ispartof>Waste and biomass valorization, 2024-11, Vol.15 (11), p.6107-6120</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-8f67e6dc3b0da7f55ce7237cf1ec5c7c38310845caea7c7a6ac0b66b018f0c243</cites><orcidid>0000-0003-0964-2264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12649-024-02573-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12649-024-02573-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ronaghi, Taha Baghban</creatorcontrib><creatorcontrib>Fotovat, Farzam</creatorcontrib><creatorcontrib>Zamzamian, Seyed Amir Hossein</creatorcontrib><title>Enhancing Cerium Oxide Nanoparticle Stability in Diesel–Biodiesel Blends via Alumina Nanoparticle Amalgamation</title><title>Waste and biomass valorization</title><addtitle>Waste Biomass Valor</addtitle><description>To reduce the environmental impacts and emissions while maintaining energy efficiency, it is a common practice to blend diesel with biodiesel. However, it can be a challenging task due to the dissimilar specifications of these fuels and the resulting blend may not show the desirable combustion properties. These shortcomings can be overcome by adding nanoparticles which significantly enhance the thermophysical properties and combustion characteristics of fuel blends. However, a critical challenge is preserving the stability of these nanoparticles within fuel blends, as they have a high tendency to agglomerate. This study addresses the issue of the poor stability of cerium oxide (ceria) nanoparticles in a fuel blend composed of 80 v% diesel and 20 v% waste cooking oil (WCO)-derived biodiesel. To this end, a novel approach was adopted to amalgamate ceria with alumina nanoparticles using a solvent-based method. The resulting cerium-alumina nanocomposite demonstrated 44% greater stability within a month than the fuel blend containing ceria nanoparticles alone. In comparison to pure biodiesel, the fuel blend incorporating the nanocomposite exhibited a 6 MJ/kg increase in heating value, a 1.5 mm 2 /s reduction in kinematic viscosity, a 100 °C decrease in flash point, an 8 °C decrease in cloud point, and a13 °C reduction in pour point. Graphical Abstract</description><subject>Aluminum oxide</subject><subject>Amalgamation</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Calorific value</subject><subject>Cerium</subject><subject>Cerium oxides</subject><subject>Combustion</subject><subject>Cooking oils</subject><subject>Diesel</subject><subject>Diesel fuels</subject><subject>Energy efficiency</subject><subject>Engineering</subject><subject>Environment</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Environmental impact</subject><subject>Flash point</subject><subject>Industrial Pollution Prevention</subject><subject>Kinematic viscosity</subject><subject>Kinematics</subject><subject>Mixtures</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Original Paper</subject><subject>Renewable and Green Energy</subject><subject>Stability</subject><subject>Thermophysical properties</subject><subject>Waste Management/Waste Technology</subject><issn>1877-2641</issn><issn>1877-265X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EElXpBVhZYh2w48QOy7aUH6miC0BiZ00cp7hKnGAniO64AzfkJJgGgdiwGM0s3nsz8yF0TMkpJUSceRrz5DwicRIqFSzie2hEMyGimKeP-z9zQg_RxPsNISSmNIuZGKF2YZ_AKmPXeK6d6Wu8ejWFxrdgmxZcZ1Sl8V0HualMt8XG4gujva4-3t5npil2M55V2hYevxjA06qvjYW__mkN1Rpq6Exjj9BBCZXXk-8-Rg-Xi_v5dbRcXd3Mp8tIMcK6KCu50LxQLCcFiDJNlRbhYFVSrVIlFMsYJVmSKtAglAAOiuSc54RmJVFxwsboZMhtXfPca9_JTdM7G1ZKFp5POM9YHFTxoFKu8d7pUrbO1OC2khL5BVcOcGWAK3dwJQ8mNph8ENu1dr_R_7g-AXqMfzM</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Ronaghi, Taha Baghban</creator><creator>Fotovat, Farzam</creator><creator>Zamzamian, Seyed Amir Hossein</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0964-2264</orcidid></search><sort><creationdate>20241101</creationdate><title>Enhancing Cerium Oxide Nanoparticle Stability in Diesel–Biodiesel Blends via Alumina Nanoparticle Amalgamation</title><author>Ronaghi, Taha Baghban ; Fotovat, Farzam ; Zamzamian, Seyed Amir Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-8f67e6dc3b0da7f55ce7237cf1ec5c7c38310845caea7c7a6ac0b66b018f0c243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum oxide</topic><topic>Amalgamation</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Calorific value</topic><topic>Cerium</topic><topic>Cerium oxides</topic><topic>Combustion</topic><topic>Cooking oils</topic><topic>Diesel</topic><topic>Diesel fuels</topic><topic>Energy efficiency</topic><topic>Engineering</topic><topic>Environment</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Environmental impact</topic><topic>Flash point</topic><topic>Industrial Pollution Prevention</topic><topic>Kinematic viscosity</topic><topic>Kinematics</topic><topic>Mixtures</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Original Paper</topic><topic>Renewable and Green Energy</topic><topic>Stability</topic><topic>Thermophysical properties</topic><topic>Waste Management/Waste Technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Ronaghi, Taha Baghban</creatorcontrib><creatorcontrib>Fotovat, Farzam</creatorcontrib><creatorcontrib>Zamzamian, Seyed Amir Hossein</creatorcontrib><collection>CrossRef</collection><jtitle>Waste and biomass valorization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ronaghi, Taha Baghban</au><au>Fotovat, Farzam</au><au>Zamzamian, Seyed Amir Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Cerium Oxide Nanoparticle Stability in Diesel–Biodiesel Blends via Alumina Nanoparticle Amalgamation</atitle><jtitle>Waste and biomass valorization</jtitle><stitle>Waste Biomass Valor</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>15</volume><issue>11</issue><spage>6107</spage><epage>6120</epage><pages>6107-6120</pages><issn>1877-2641</issn><eissn>1877-265X</eissn><abstract>To reduce the environmental impacts and emissions while maintaining energy efficiency, it is a common practice to blend diesel with biodiesel. However, it can be a challenging task due to the dissimilar specifications of these fuels and the resulting blend may not show the desirable combustion properties. These shortcomings can be overcome by adding nanoparticles which significantly enhance the thermophysical properties and combustion characteristics of fuel blends. However, a critical challenge is preserving the stability of these nanoparticles within fuel blends, as they have a high tendency to agglomerate. This study addresses the issue of the poor stability of cerium oxide (ceria) nanoparticles in a fuel blend composed of 80 v% diesel and 20 v% waste cooking oil (WCO)-derived biodiesel. To this end, a novel approach was adopted to amalgamate ceria with alumina nanoparticles using a solvent-based method. The resulting cerium-alumina nanocomposite demonstrated 44% greater stability within a month than the fuel blend containing ceria nanoparticles alone. In comparison to pure biodiesel, the fuel blend incorporating the nanocomposite exhibited a 6 MJ/kg increase in heating value, a 1.5 mm 2 /s reduction in kinematic viscosity, a 100 °C decrease in flash point, an 8 °C decrease in cloud point, and a13 °C reduction in pour point. Graphical Abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12649-024-02573-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0964-2264</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1877-2641
ispartof Waste and biomass valorization, 2024-11, Vol.15 (11), p.6107-6120
issn 1877-2641
1877-265X
language eng
recordid cdi_proquest_journals_3118466832
source SpringerLink Journals - AutoHoldings
subjects Aluminum oxide
Amalgamation
Biodiesel fuels
Biofuels
Calorific value
Cerium
Cerium oxides
Combustion
Cooking oils
Diesel
Diesel fuels
Energy efficiency
Engineering
Environment
Environmental Engineering/Biotechnology
Environmental impact
Flash point
Industrial Pollution Prevention
Kinematic viscosity
Kinematics
Mixtures
Nanocomposites
Nanoparticles
Original Paper
Renewable and Green Energy
Stability
Thermophysical properties
Waste Management/Waste Technology
title Enhancing Cerium Oxide Nanoparticle Stability in Diesel–Biodiesel Blends via Alumina Nanoparticle Amalgamation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Cerium%20Oxide%20Nanoparticle%20Stability%20in%20Diesel%E2%80%93Biodiesel%20Blends%20via%20Alumina%20Nanoparticle%20Amalgamation&rft.jtitle=Waste%20and%20biomass%20valorization&rft.au=Ronaghi,%20Taha%20Baghban&rft.date=2024-11-01&rft.volume=15&rft.issue=11&rft.spage=6107&rft.epage=6120&rft.pages=6107-6120&rft.issn=1877-2641&rft.eissn=1877-265X&rft_id=info:doi/10.1007/s12649-024-02573-6&rft_dat=%3Cproquest_cross%3E3118466832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118466832&rft_id=info:pmid/&rfr_iscdi=true