Parameter optimization of the field-road trajectory segmentation model based on the chaos sensing slime mould algorithm
Field-road trajectory segmentation, which aims to automatically divide a trajectory into a sequence of field-road segments, is one of the important tasks of the agricultural machinery trajectory process. This study aims to enhance the performance of the field-road segmentation problem by introducing...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2024-10, Vol.28 (19), p.11065-11132 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11132 |
---|---|
container_issue | 19 |
container_start_page | 11065 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 28 |
creator | Pan, Jiawen Guo, Zhou Wu, Caicong Zhai, Weixin |
description | Field-road trajectory segmentation, which aims to automatically divide a trajectory into a sequence of field-road segments, is one of the important tasks of the agricultural machinery trajectory process. This study aims to enhance the performance of the field-road segmentation problem by introducing a novel parameter optimization strategy that relies on metaheuristic algorithms. The utilization of the metaheuristic algorithm offers precise and efficient techniques for determining parameter combinations in the field-road segmentation model. A novel enhanced optimization algorithm called the chaos sensing slime mould algorithm (CSSMA), aimed at determining out the optimal parameter combination from a large constrained solution space is proposed to further improve the segmentation performance of the model. First, to strengthen the exploration capability of the algorithm, a chaotic strategy is used to initialize the search agents. Furthermore, the CSSMA incorporates the beetle antennae search algorithm and the genetic algorithm to improve its exploitation potential. Ultimately, a proposed technique for updating control parameters in a nonlinear and dynamic manner aims to achieve a balance between exploration and exploitation. This strategy involves adaptively adjusting computing operations based on feedback from the optimization process. In order to assess the effectiveness of the CSSMA, the algorithm is compared to other metaheuristic algorithms using 23 standard benchmark functions. Furthermore, the CSSMA is utilized to address the practical implementation of the parameter optimization approach for field-road segmentation. The goal is to achieve the utmost accuracy in segmentation and compare it with the current method. Experimental results demonstrate the superior convergence and speed of CSSMA, along with its benefits in extracting optimal parameter structures. It surpasses prior techniques in handling the complexities of field-road trajectory processing problems including several models and nonlinearity features. Additionally, it offers a comprehensive solution for optimizing parameters in various field-road segmentation models. |
doi_str_mv | 10.1007/s00500-024-09869-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3118390106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118390106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1158-79d00a5045265e47159d68a07865d936e4ef0b24ce3fa32ac170801589893af53</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK7-AU8Bz9FJ0zTJURa_YEEPeg7Zdtrt0jZrkkXWX292K3jzNDPwPO_Am2XXDG4ZgLwLAAKAQl5Q0KrUVJ1kM1ZwTmUh9elxz6ksC36eXYSwAciZFHyWfb1ZbweM6Inbxm7ovm3s3EhcQ-IaSdNhX1PvbE2itxusovN7ErAdcIwTObgae7KyAWuSzoNVra0LiRpDN7Yk9N2ACdv1NbF963wX18NldtbYPuDV75xnH48P74tnunx9elncL2nFmFBU6hrACihEXgosJBO6LpUFqUpRa15igQ2s8qJC3lie24pJUJBMrTS3jeDz7GbK3Xr3ucMQzcbt_JheGs6Y4hoYlInKJ6ryLgSPjdn6brB-bxiYQ8FmKtikgs2xYKOSxCcpJHhs0f9F_2P9AMWGfuo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118390106</pqid></control><display><type>article</type><title>Parameter optimization of the field-road trajectory segmentation model based on the chaos sensing slime mould algorithm</title><source>Springer Nature - Complete Springer Journals</source><creator>Pan, Jiawen ; Guo, Zhou ; Wu, Caicong ; Zhai, Weixin</creator><creatorcontrib>Pan, Jiawen ; Guo, Zhou ; Wu, Caicong ; Zhai, Weixin</creatorcontrib><description>Field-road trajectory segmentation, which aims to automatically divide a trajectory into a sequence of field-road segments, is one of the important tasks of the agricultural machinery trajectory process. This study aims to enhance the performance of the field-road segmentation problem by introducing a novel parameter optimization strategy that relies on metaheuristic algorithms. The utilization of the metaheuristic algorithm offers precise and efficient techniques for determining parameter combinations in the field-road segmentation model. A novel enhanced optimization algorithm called the chaos sensing slime mould algorithm (CSSMA), aimed at determining out the optimal parameter combination from a large constrained solution space is proposed to further improve the segmentation performance of the model. First, to strengthen the exploration capability of the algorithm, a chaotic strategy is used to initialize the search agents. Furthermore, the CSSMA incorporates the beetle antennae search algorithm and the genetic algorithm to improve its exploitation potential. Ultimately, a proposed technique for updating control parameters in a nonlinear and dynamic manner aims to achieve a balance between exploration and exploitation. This strategy involves adaptively adjusting computing operations based on feedback from the optimization process. In order to assess the effectiveness of the CSSMA, the algorithm is compared to other metaheuristic algorithms using 23 standard benchmark functions. Furthermore, the CSSMA is utilized to address the practical implementation of the parameter optimization approach for field-road segmentation. The goal is to achieve the utmost accuracy in segmentation and compare it with the current method. Experimental results demonstrate the superior convergence and speed of CSSMA, along with its benefits in extracting optimal parameter structures. It surpasses prior techniques in handling the complexities of field-road trajectory processing problems including several models and nonlinearity features. Additionally, it offers a comprehensive solution for optimizing parameters in various field-road segmentation models.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-024-09869-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural equipment ; Antennae ; Artificial Intelligence ; Clustering ; Computational Intelligence ; Control ; Energy consumption ; Engineering ; Exploitation ; Farm machinery ; Genetic algorithms ; Heuristic methods ; Knowledge sharing ; Mathematical Logic and Foundations ; Mechatronics ; Methods ; Neural networks ; Nonlinear control ; Nonlinearity ; Optimization ; Optimization algorithms ; Process parameters ; Roads ; Robotics ; Search algorithms ; Segmentation ; Slime ; Solution space ; Time series ; Trajectory optimization</subject><ispartof>Soft computing (Berlin, Germany), 2024-10, Vol.28 (19), p.11065-11132</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1158-79d00a5045265e47159d68a07865d936e4ef0b24ce3fa32ac170801589893af53</cites><orcidid>0000-0002-5507-6593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-024-09869-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00500-024-09869-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pan, Jiawen</creatorcontrib><creatorcontrib>Guo, Zhou</creatorcontrib><creatorcontrib>Wu, Caicong</creatorcontrib><creatorcontrib>Zhai, Weixin</creatorcontrib><title>Parameter optimization of the field-road trajectory segmentation model based on the chaos sensing slime mould algorithm</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Field-road trajectory segmentation, which aims to automatically divide a trajectory into a sequence of field-road segments, is one of the important tasks of the agricultural machinery trajectory process. This study aims to enhance the performance of the field-road segmentation problem by introducing a novel parameter optimization strategy that relies on metaheuristic algorithms. The utilization of the metaheuristic algorithm offers precise and efficient techniques for determining parameter combinations in the field-road segmentation model. A novel enhanced optimization algorithm called the chaos sensing slime mould algorithm (CSSMA), aimed at determining out the optimal parameter combination from a large constrained solution space is proposed to further improve the segmentation performance of the model. First, to strengthen the exploration capability of the algorithm, a chaotic strategy is used to initialize the search agents. Furthermore, the CSSMA incorporates the beetle antennae search algorithm and the genetic algorithm to improve its exploitation potential. Ultimately, a proposed technique for updating control parameters in a nonlinear and dynamic manner aims to achieve a balance between exploration and exploitation. This strategy involves adaptively adjusting computing operations based on feedback from the optimization process. In order to assess the effectiveness of the CSSMA, the algorithm is compared to other metaheuristic algorithms using 23 standard benchmark functions. Furthermore, the CSSMA is utilized to address the practical implementation of the parameter optimization approach for field-road segmentation. The goal is to achieve the utmost accuracy in segmentation and compare it with the current method. Experimental results demonstrate the superior convergence and speed of CSSMA, along with its benefits in extracting optimal parameter structures. It surpasses prior techniques in handling the complexities of field-road trajectory processing problems including several models and nonlinearity features. Additionally, it offers a comprehensive solution for optimizing parameters in various field-road segmentation models.</description><subject>Agricultural equipment</subject><subject>Antennae</subject><subject>Artificial Intelligence</subject><subject>Clustering</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Exploitation</subject><subject>Farm machinery</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Knowledge sharing</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Process parameters</subject><subject>Roads</subject><subject>Robotics</subject><subject>Search algorithms</subject><subject>Segmentation</subject><subject>Slime</subject><subject>Solution space</subject><subject>Time series</subject><subject>Trajectory optimization</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouK7-AU8Bz9FJ0zTJURa_YEEPeg7Zdtrt0jZrkkXWX292K3jzNDPwPO_Am2XXDG4ZgLwLAAKAQl5Q0KrUVJ1kM1ZwTmUh9elxz6ksC36eXYSwAciZFHyWfb1ZbweM6Inbxm7ovm3s3EhcQ-IaSdNhX1PvbE2itxusovN7ErAdcIwTObgae7KyAWuSzoNVra0LiRpDN7Yk9N2ACdv1NbF963wX18NldtbYPuDV75xnH48P74tnunx9elncL2nFmFBU6hrACihEXgosJBO6LpUFqUpRa15igQ2s8qJC3lie24pJUJBMrTS3jeDz7GbK3Xr3ucMQzcbt_JheGs6Y4hoYlInKJ6ryLgSPjdn6brB-bxiYQ8FmKtikgs2xYKOSxCcpJHhs0f9F_2P9AMWGfuo</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Pan, Jiawen</creator><creator>Guo, Zhou</creator><creator>Wu, Caicong</creator><creator>Zhai, Weixin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-5507-6593</orcidid></search><sort><creationdate>20241001</creationdate><title>Parameter optimization of the field-road trajectory segmentation model based on the chaos sensing slime mould algorithm</title><author>Pan, Jiawen ; Guo, Zhou ; Wu, Caicong ; Zhai, Weixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1158-79d00a5045265e47159d68a07865d936e4ef0b24ce3fa32ac170801589893af53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural equipment</topic><topic>Antennae</topic><topic>Artificial Intelligence</topic><topic>Clustering</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Exploitation</topic><topic>Farm machinery</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Knowledge sharing</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Process parameters</topic><topic>Roads</topic><topic>Robotics</topic><topic>Search algorithms</topic><topic>Segmentation</topic><topic>Slime</topic><topic>Solution space</topic><topic>Time series</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Jiawen</creatorcontrib><creatorcontrib>Guo, Zhou</creatorcontrib><creatorcontrib>Wu, Caicong</creatorcontrib><creatorcontrib>Zhai, Weixin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Jiawen</au><au>Guo, Zhou</au><au>Wu, Caicong</au><au>Zhai, Weixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter optimization of the field-road trajectory segmentation model based on the chaos sensing slime mould algorithm</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>28</volume><issue>19</issue><spage>11065</spage><epage>11132</epage><pages>11065-11132</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Field-road trajectory segmentation, which aims to automatically divide a trajectory into a sequence of field-road segments, is one of the important tasks of the agricultural machinery trajectory process. This study aims to enhance the performance of the field-road segmentation problem by introducing a novel parameter optimization strategy that relies on metaheuristic algorithms. The utilization of the metaheuristic algorithm offers precise and efficient techniques for determining parameter combinations in the field-road segmentation model. A novel enhanced optimization algorithm called the chaos sensing slime mould algorithm (CSSMA), aimed at determining out the optimal parameter combination from a large constrained solution space is proposed to further improve the segmentation performance of the model. First, to strengthen the exploration capability of the algorithm, a chaotic strategy is used to initialize the search agents. Furthermore, the CSSMA incorporates the beetle antennae search algorithm and the genetic algorithm to improve its exploitation potential. Ultimately, a proposed technique for updating control parameters in a nonlinear and dynamic manner aims to achieve a balance between exploration and exploitation. This strategy involves adaptively adjusting computing operations based on feedback from the optimization process. In order to assess the effectiveness of the CSSMA, the algorithm is compared to other metaheuristic algorithms using 23 standard benchmark functions. Furthermore, the CSSMA is utilized to address the practical implementation of the parameter optimization approach for field-road segmentation. The goal is to achieve the utmost accuracy in segmentation and compare it with the current method. Experimental results demonstrate the superior convergence and speed of CSSMA, along with its benefits in extracting optimal parameter structures. It surpasses prior techniques in handling the complexities of field-road trajectory processing problems including several models and nonlinearity features. Additionally, it offers a comprehensive solution for optimizing parameters in various field-road segmentation models.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-024-09869-8</doi><tpages>68</tpages><orcidid>https://orcid.org/0000-0002-5507-6593</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2024-10, Vol.28 (19), p.11065-11132 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_3118390106 |
source | Springer Nature - Complete Springer Journals |
subjects | Agricultural equipment Antennae Artificial Intelligence Clustering Computational Intelligence Control Energy consumption Engineering Exploitation Farm machinery Genetic algorithms Heuristic methods Knowledge sharing Mathematical Logic and Foundations Mechatronics Methods Neural networks Nonlinear control Nonlinearity Optimization Optimization algorithms Process parameters Roads Robotics Search algorithms Segmentation Slime Solution space Time series Trajectory optimization |
title | Parameter optimization of the field-road trajectory segmentation model based on the chaos sensing slime mould algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20optimization%20of%20the%20field-road%20trajectory%20segmentation%20model%20based%20on%20the%20chaos%20sensing%20slime%20mould%20algorithm&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Pan,%20Jiawen&rft.date=2024-10-01&rft.volume=28&rft.issue=19&rft.spage=11065&rft.epage=11132&rft.pages=11065-11132&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-024-09869-8&rft_dat=%3Cproquest_cross%3E3118390106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118390106&rft_id=info:pmid/&rfr_iscdi=true |