Mathematical analysis of a finite difference method for inhomogeneous incompressible Navier–Stokes equations

This paper provides mathematical analysis of an elementary fully discrete finite difference method applied to inhomogeneous (i.e., non-constant density and viscosity) incompressible Navier–Stokes system on a bounded domain. The proposed method is classical in the sense that it consists of a version...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2024-10, Vol.156 (5), p.1809-1853
1. Verfasser: Soga, Kohei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1853
container_issue 5
container_start_page 1809
container_title Numerische Mathematik
container_volume 156
creator Soga, Kohei
description This paper provides mathematical analysis of an elementary fully discrete finite difference method applied to inhomogeneous (i.e., non-constant density and viscosity) incompressible Navier–Stokes system on a bounded domain. The proposed method is classical in the sense that it consists of a version of the Lax–Friedrichs explicit scheme for the transport equation and a version of Ladyzhenskaya’s implicit scheme for the Navier–Stokes equations. Under the condition that the initial density profile is strictly away from zero, the scheme is proven to be strongly convergent to a weak solution (up to a subsequence) within an arbitrary time interval, which can be seen as a proof of existence of a weak solution to the system. The results contain a new Aubin–Lions–Simon type compactness method with an interpolation inequality between strong norms of the velocity and a weak norm of the product of the density and velocity.
doi_str_mv 10.1007/s00211-024-01421-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3118298040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118298040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-4f96ae6c926903d4a8b9e46995c6f969db0576bfbec991cc944423e618bf92583</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhSMEEqVwAVaWWAfGjpPGS1TxJxVYABI7y3HGrUsSFztFyo47cENOgiFI7FjNjOa9N5ovSY4pnFKA2VkAYJSmwHgKlDOaDjvJBATP04zxfDf2wESaC_G8nxyEsAags4LTSdLdqn6FreqtVg1RnWqGYANxhihibGd7JLU1Bj12GkmL_crVxDhPbLdyrVtih24b4qRdu_EYgq0aJHfqzaL_fP946N0LBoKv23jBdeEw2TOqCXj0W6fJ0-XF4_w6Xdxf3czPF6lmAH3KjSgUFlqwQkBWc1VWAnkhRK6LuBJ1BfmsqEyFWgiqteCcswwLWlZGsLzMpsnJmLvx7nWLoZdrt_XxuyAzSksmSuAQVWxUae9C8GjkxttW-UFSkN9c5chVRq7yh6scoikbTSGKuyX6v-h_XF88U36s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118298040</pqid></control><display><type>article</type><title>Mathematical analysis of a finite difference method for inhomogeneous incompressible Navier–Stokes equations</title><source>SpringerLink Journals</source><creator>Soga, Kohei</creator><creatorcontrib>Soga, Kohei</creatorcontrib><description>This paper provides mathematical analysis of an elementary fully discrete finite difference method applied to inhomogeneous (i.e., non-constant density and viscosity) incompressible Navier–Stokes system on a bounded domain. The proposed method is classical in the sense that it consists of a version of the Lax–Friedrichs explicit scheme for the transport equation and a version of Ladyzhenskaya’s implicit scheme for the Navier–Stokes equations. Under the condition that the initial density profile is strictly away from zero, the scheme is proven to be strongly convergent to a weak solution (up to a subsequence) within an arbitrary time interval, which can be seen as a proof of existence of a weak solution to the system. The results contain a new Aubin–Lions–Simon type compactness method with an interpolation inequality between strong norms of the velocity and a weak norm of the product of the density and velocity.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-024-01421-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Density ; Finite difference method ; Fluid flow ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Navier-Stokes equations ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Theoretical ; Transport equations</subject><ispartof>Numerische Mathematik, 2024-10, Vol.156 (5), p.1809-1853</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-4f96ae6c926903d4a8b9e46995c6f969db0576bfbec991cc944423e618bf92583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-024-01421-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-024-01421-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Soga, Kohei</creatorcontrib><title>Mathematical analysis of a finite difference method for inhomogeneous incompressible Navier–Stokes equations</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>This paper provides mathematical analysis of an elementary fully discrete finite difference method applied to inhomogeneous (i.e., non-constant density and viscosity) incompressible Navier–Stokes system on a bounded domain. The proposed method is classical in the sense that it consists of a version of the Lax–Friedrichs explicit scheme for the transport equation and a version of Ladyzhenskaya’s implicit scheme for the Navier–Stokes equations. Under the condition that the initial density profile is strictly away from zero, the scheme is proven to be strongly convergent to a weak solution (up to a subsequence) within an arbitrary time interval, which can be seen as a proof of existence of a weak solution to the system. The results contain a new Aubin–Lions–Simon type compactness method with an interpolation inequality between strong norms of the velocity and a weak norm of the product of the density and velocity.</description><subject>Density</subject><subject>Finite difference method</subject><subject>Fluid flow</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Navier-Stokes equations</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Transport equations</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhSMEEqVwAVaWWAfGjpPGS1TxJxVYABI7y3HGrUsSFztFyo47cENOgiFI7FjNjOa9N5ovSY4pnFKA2VkAYJSmwHgKlDOaDjvJBATP04zxfDf2wESaC_G8nxyEsAags4LTSdLdqn6FreqtVg1RnWqGYANxhihibGd7JLU1Bj12GkmL_crVxDhPbLdyrVtih24b4qRdu_EYgq0aJHfqzaL_fP946N0LBoKv23jBdeEw2TOqCXj0W6fJ0-XF4_w6Xdxf3czPF6lmAH3KjSgUFlqwQkBWc1VWAnkhRK6LuBJ1BfmsqEyFWgiqteCcswwLWlZGsLzMpsnJmLvx7nWLoZdrt_XxuyAzSksmSuAQVWxUae9C8GjkxttW-UFSkN9c5chVRq7yh6scoikbTSGKuyX6v-h_XF88U36s</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Soga, Kohei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Mathematical analysis of a finite difference method for inhomogeneous incompressible Navier–Stokes equations</title><author>Soga, Kohei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-4f96ae6c926903d4a8b9e46995c6f969db0576bfbec991cc944423e618bf92583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Density</topic><topic>Finite difference method</topic><topic>Fluid flow</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Navier-Stokes equations</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soga, Kohei</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soga, Kohei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical analysis of a finite difference method for inhomogeneous incompressible Navier–Stokes equations</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>156</volume><issue>5</issue><spage>1809</spage><epage>1853</epage><pages>1809-1853</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>This paper provides mathematical analysis of an elementary fully discrete finite difference method applied to inhomogeneous (i.e., non-constant density and viscosity) incompressible Navier–Stokes system on a bounded domain. The proposed method is classical in the sense that it consists of a version of the Lax–Friedrichs explicit scheme for the transport equation and a version of Ladyzhenskaya’s implicit scheme for the Navier–Stokes equations. Under the condition that the initial density profile is strictly away from zero, the scheme is proven to be strongly convergent to a weak solution (up to a subsequence) within an arbitrary time interval, which can be seen as a proof of existence of a weak solution to the system. The results contain a new Aubin–Lions–Simon type compactness method with an interpolation inequality between strong norms of the velocity and a weak norm of the product of the density and velocity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-024-01421-y</doi><tpages>45</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2024-10, Vol.156 (5), p.1809-1853
issn 0029-599X
0945-3245
language eng
recordid cdi_proquest_journals_3118298040
source SpringerLink Journals
subjects Density
Finite difference method
Fluid flow
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Navier-Stokes equations
Numerical Analysis
Numerical and Computational Physics
Simulation
Theoretical
Transport equations
title Mathematical analysis of a finite difference method for inhomogeneous incompressible Navier–Stokes equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20analysis%20of%20a%20finite%20difference%20method%20for%20inhomogeneous%20incompressible%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Numerische%20Mathematik&rft.au=Soga,%20Kohei&rft.date=2024-10-01&rft.volume=156&rft.issue=5&rft.spage=1809&rft.epage=1853&rft.pages=1809-1853&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-024-01421-y&rft_dat=%3Cproquest_cross%3E3118298040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118298040&rft_id=info:pmid/&rfr_iscdi=true