Refinement of the Main Lemmas of the Theory of Critical Branching Processes

In the paper, we consider critical Markov branching random processes of continuous time and branching random processes of discrete time (critical Galton–Watson processes) defined respectively by the generating functions and In this case, the generating function will be a solution to an ordinary diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2024-07, Vol.45 (7), p.3290-3298
1. Verfasser: Formanov, Sh. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3298
container_issue 7
container_start_page 3290
container_title Lobachevskii journal of mathematics
container_volume 45
creator Formanov, Sh. K.
description In the paper, we consider critical Markov branching random processes of continuous time and branching random processes of discrete time (critical Galton–Watson processes) defined respectively by the generating functions and In this case, the generating function will be a solution to an ordinary differential equation, the right side of which is a nonlinear function of and the function is equal to the number of descendants of one particle at the -th iteration of the generating function. Asymptotic analysis of generating functions and for respectively, plays a major role in solving the main problems of the theory of branching random processes. Statements related to the asymptotic analysis of generating functions and for respectively, came to be called the main lemmas.
doi_str_mv 10.1134/S1995080224603989
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3118297975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118297975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-6887644f31917dd49234c9c863bbbeafc07d56c86b19839f93ac963cc8afe1863</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEEmPwAbhV4lyImy6NjzDxTwyBYJyrNHXWTms6ku6wb0-mgTggTvazf-9ZMmPnwC8BRH71DogTrniW5ZILVHjARqBApYgyO4x9XKe7_TE7CWHJIyilHLGnN7Kto47ckPQ2GRpKnnXrkhl1nQ4_o3lDvd_u1NS3Q2v0Krnx2pmmdYvk1feGQqBwyo6sXgU6-65j9nF3O58-pLOX-8fp9Sw1gGpIpVKFzHMrAKGo6xwzkRs0Soqqqkhbw4t6IqOuIi7QotAGpTBGaUsQsTG72Oeuff-5oTCUy37jXTxZCgCVYYHFJFKwp4zvQ_Bky7VvO-23JfBy97Pyz8-iJ9t7QmTdgvxv8v-mLyoNbJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118297975</pqid></control><display><type>article</type><title>Refinement of the Main Lemmas of the Theory of Critical Branching Processes</title><source>SpringerLink (Online service)</source><creator>Formanov, Sh. K.</creator><creatorcontrib>Formanov, Sh. K.</creatorcontrib><description>In the paper, we consider critical Markov branching random processes of continuous time and branching random processes of discrete time (critical Galton–Watson processes) defined respectively by the generating functions and In this case, the generating function will be a solution to an ordinary differential equation, the right side of which is a nonlinear function of and the function is equal to the number of descendants of one particle at the -th iteration of the generating function. Asymptotic analysis of generating functions and for respectively, plays a major role in solving the main problems of the theory of branching random processes. Statements related to the asymptotic analysis of generating functions and for respectively, came to be called the main lemmas.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080224603989</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Asymptotic properties ; Branching (mathematics) ; Differential equations ; Geometry ; Markov processes ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Random processes</subject><ispartof>Lobachevskii journal of mathematics, 2024-07, Vol.45 (7), p.3290-3298</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><rights>Pleiades Publishing, Ltd. 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-6887644f31917dd49234c9c863bbbeafc07d56c86b19839f93ac963cc8afe1863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080224603989$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080224603989$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Formanov, Sh. K.</creatorcontrib><title>Refinement of the Main Lemmas of the Theory of Critical Branching Processes</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In the paper, we consider critical Markov branching random processes of continuous time and branching random processes of discrete time (critical Galton–Watson processes) defined respectively by the generating functions and In this case, the generating function will be a solution to an ordinary differential equation, the right side of which is a nonlinear function of and the function is equal to the number of descendants of one particle at the -th iteration of the generating function. Asymptotic analysis of generating functions and for respectively, plays a major role in solving the main problems of the theory of branching random processes. Statements related to the asymptotic analysis of generating functions and for respectively, came to be called the main lemmas.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Branching (mathematics)</subject><subject>Differential equations</subject><subject>Geometry</subject><subject>Markov processes</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwzAMxSMEEmPwAbhV4lyImy6NjzDxTwyBYJyrNHXWTms6ku6wb0-mgTggTvazf-9ZMmPnwC8BRH71DogTrniW5ZILVHjARqBApYgyO4x9XKe7_TE7CWHJIyilHLGnN7Kto47ckPQ2GRpKnnXrkhl1nQ4_o3lDvd_u1NS3Q2v0Krnx2pmmdYvk1feGQqBwyo6sXgU6-65j9nF3O58-pLOX-8fp9Sw1gGpIpVKFzHMrAKGo6xwzkRs0Soqqqkhbw4t6IqOuIi7QotAGpTBGaUsQsTG72Oeuff-5oTCUy37jXTxZCgCVYYHFJFKwp4zvQ_Bky7VvO-23JfBy97Pyz8-iJ9t7QmTdgvxv8v-mLyoNbJs</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Formanov, Sh. K.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Refinement of the Main Lemmas of the Theory of Critical Branching Processes</title><author>Formanov, Sh. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-6887644f31917dd49234c9c863bbbeafc07d56c86b19839f93ac963cc8afe1863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Branching (mathematics)</topic><topic>Differential equations</topic><topic>Geometry</topic><topic>Markov processes</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Formanov, Sh. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Formanov, Sh. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refinement of the Main Lemmas of the Theory of Critical Branching Processes</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>45</volume><issue>7</issue><spage>3290</spage><epage>3298</epage><pages>3290-3298</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In the paper, we consider critical Markov branching random processes of continuous time and branching random processes of discrete time (critical Galton–Watson processes) defined respectively by the generating functions and In this case, the generating function will be a solution to an ordinary differential equation, the right side of which is a nonlinear function of and the function is equal to the number of descendants of one particle at the -th iteration of the generating function. Asymptotic analysis of generating functions and for respectively, plays a major role in solving the main problems of the theory of branching random processes. Statements related to the asymptotic analysis of generating functions and for respectively, came to be called the main lemmas.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080224603989</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2024-07, Vol.45 (7), p.3290-3298
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_3118297975
source SpringerLink (Online service)
subjects Algebra
Analysis
Asymptotic properties
Branching (mathematics)
Differential equations
Geometry
Markov processes
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
Random processes
title Refinement of the Main Lemmas of the Theory of Critical Branching Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refinement%20of%20the%20Main%20Lemmas%20of%20the%20Theory%20of%20Critical%20Branching%20Processes&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Formanov,%20Sh.%20K.&rft.date=2024-07-01&rft.volume=45&rft.issue=7&rft.spage=3290&rft.epage=3298&rft.pages=3290-3298&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080224603989&rft_dat=%3Cproquest_cross%3E3118297975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118297975&rft_id=info:pmid/&rfr_iscdi=true