Estimates for the Quantized Tensor Train Ranks for the Power Functions
In this work, we provide theoretical estimates for the ranks of the power functions , in the quantized tensor train (QTT) format for . Such functions and their several generalizations (e.g., ) play an important role in studies of the asymptotic solutions of the aggregation-fragmentation kinetic equa...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2024-07, Vol.45 (7), p.3182-3187 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3187 |
---|---|
container_issue | 7 |
container_start_page | 3182 |
container_title | Lobachevskii journal of mathematics |
container_volume | 45 |
creator | Smirnov, M. S. Matveev, S. A. |
description | In this work, we provide theoretical estimates for the ranks of the power functions
,
in the quantized tensor train (QTT) format for
. Such functions and their several generalizations (e.g.,
) play an important role in studies of the asymptotic solutions of the aggregation-fragmentation kinetic equations. In order to support the constructed theory we verify the values of QTT-ranks of these functions in practice with the use of the TTSVD procedure and show an agreement between the numerical and analytical results. |
doi_str_mv | 10.1134/S1995080224603734 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3118297906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118297906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-ad14618e11065795ff2e5827590c7d620e05d6d41571658434c499b824d70a973</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC59VMvnOU0lqh4Nd6DnE3q1s1W5Msor_elBV6EE8zzPu8M8yL0CngcwDKLh5Aa44VJoQJTCVle2gCClSptSD7uc9yudUP0VGMa5xBIcQELeYxde82uVi0fSjSiyvuButT9-2aonI-5mEVbOeLe-tfd9Bt_-lCsRh8nbrex2N00Nq36E5-6xQ9LubVbFmubq6uZ5ersiYMUmkbYAKUA8CCS83bljiuiOQa17IRBDvMG9Ew4BIEV4yymmn9pAhrJLZa0ik6G_duQv8xuJjMuh-CzycNBVBES41FpmCk6tDHGFxrNiE_Gb4MYLONy_yJK3vI6ImZ9c8u7Db_b_oBJCJpgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118297906</pqid></control><display><type>article</type><title>Estimates for the Quantized Tensor Train Ranks for the Power Functions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Smirnov, M. S. ; Matveev, S. A.</creator><creatorcontrib>Smirnov, M. S. ; Matveev, S. A.</creatorcontrib><description>In this work, we provide theoretical estimates for the ranks of the power functions
,
in the quantized tensor train (QTT) format for
. Such functions and their several generalizations (e.g.,
) play an important role in studies of the asymptotic solutions of the aggregation-fragmentation kinetic equations. In order to support the constructed theory we verify the values of QTT-ranks of these functions in practice with the use of the TTSVD procedure and show an agreement between the numerical and analytical results.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080224603734</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Asymptotic methods ; Estimates ; Geometry ; Kinetic equations ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Tensors</subject><ispartof>Lobachevskii journal of mathematics, 2024-07, Vol.45 (7), p.3182-3187</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><rights>Pleiades Publishing, Ltd. 2024.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-ad14618e11065795ff2e5827590c7d620e05d6d41571658434c499b824d70a973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080224603734$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080224603734$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Smirnov, M. S.</creatorcontrib><creatorcontrib>Matveev, S. A.</creatorcontrib><title>Estimates for the Quantized Tensor Train Ranks for the Power Functions</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In this work, we provide theoretical estimates for the ranks of the power functions
,
in the quantized tensor train (QTT) format for
. Such functions and their several generalizations (e.g.,
) play an important role in studies of the asymptotic solutions of the aggregation-fragmentation kinetic equations. In order to support the constructed theory we verify the values of QTT-ranks of these functions in practice with the use of the TTSVD procedure and show an agreement between the numerical and analytical results.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Asymptotic methods</subject><subject>Estimates</subject><subject>Geometry</subject><subject>Kinetic equations</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Tensors</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC59VMvnOU0lqh4Nd6DnE3q1s1W5Msor_elBV6EE8zzPu8M8yL0CngcwDKLh5Aa44VJoQJTCVle2gCClSptSD7uc9yudUP0VGMa5xBIcQELeYxde82uVi0fSjSiyvuButT9-2aonI-5mEVbOeLe-tfd9Bt_-lCsRh8nbrex2N00Nq36E5-6xQ9LubVbFmubq6uZ5ersiYMUmkbYAKUA8CCS83bljiuiOQa17IRBDvMG9Ew4BIEV4yymmn9pAhrJLZa0ik6G_duQv8xuJjMuh-CzycNBVBES41FpmCk6tDHGFxrNiE_Gb4MYLONy_yJK3vI6ImZ9c8u7Db_b_oBJCJpgQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Smirnov, M. S.</creator><creator>Matveev, S. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Estimates for the Quantized Tensor Train Ranks for the Power Functions</title><author>Smirnov, M. S. ; Matveev, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-ad14618e11065795ff2e5827590c7d620e05d6d41571658434c499b824d70a973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Asymptotic methods</topic><topic>Estimates</topic><topic>Geometry</topic><topic>Kinetic equations</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, M. S.</creatorcontrib><creatorcontrib>Matveev, S. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov, M. S.</au><au>Matveev, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates for the Quantized Tensor Train Ranks for the Power Functions</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>45</volume><issue>7</issue><spage>3182</spage><epage>3187</epage><pages>3182-3187</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In this work, we provide theoretical estimates for the ranks of the power functions
,
in the quantized tensor train (QTT) format for
. Such functions and their several generalizations (e.g.,
) play an important role in studies of the asymptotic solutions of the aggregation-fragmentation kinetic equations. In order to support the constructed theory we verify the values of QTT-ranks of these functions in practice with the use of the TTSVD procedure and show an agreement between the numerical and analytical results.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080224603734</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2024-07, Vol.45 (7), p.3182-3187 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_3118297906 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Asymptotic methods Estimates Geometry Kinetic equations Mathematical Logic and Foundations Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes Tensors |
title | Estimates for the Quantized Tensor Train Ranks for the Power Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20for%20the%20Quantized%20Tensor%20Train%20Ranks%20for%20the%20Power%20Functions&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Smirnov,%20M.%20S.&rft.date=2024-07-01&rft.volume=45&rft.issue=7&rft.spage=3182&rft.epage=3187&rft.pages=3182-3187&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080224603734&rft_dat=%3Cproquest_cross%3E3118297906%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118297906&rft_id=info:pmid/&rfr_iscdi=true |