Estimates for the Quantized Tensor Train Ranks for the Power Functions

In this work, we provide theoretical estimates for the ranks of the power functions , in the quantized tensor train (QTT) format for . Such functions and their several generalizations (e.g., ) play an important role in studies of the asymptotic solutions of the aggregation-fragmentation kinetic equa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2024-07, Vol.45 (7), p.3182-3187
Hauptverfasser: Smirnov, M. S., Matveev, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3187
container_issue 7
container_start_page 3182
container_title Lobachevskii journal of mathematics
container_volume 45
creator Smirnov, M. S.
Matveev, S. A.
description In this work, we provide theoretical estimates for the ranks of the power functions , in the quantized tensor train (QTT) format for . Such functions and their several generalizations (e.g., ) play an important role in studies of the asymptotic solutions of the aggregation-fragmentation kinetic equations. In order to support the constructed theory we verify the values of QTT-ranks of these functions in practice with the use of the TTSVD procedure and show an agreement between the numerical and analytical results.
doi_str_mv 10.1134/S1995080224603734
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3118297906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118297906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-ad14618e11065795ff2e5827590c7d620e05d6d41571658434c499b824d70a973</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC59VMvnOU0lqh4Nd6DnE3q1s1W5Msor_elBV6EE8zzPu8M8yL0CngcwDKLh5Aa44VJoQJTCVle2gCClSptSD7uc9yudUP0VGMa5xBIcQELeYxde82uVi0fSjSiyvuButT9-2aonI-5mEVbOeLe-tfd9Bt_-lCsRh8nbrex2N00Nq36E5-6xQ9LubVbFmubq6uZ5ersiYMUmkbYAKUA8CCS83bljiuiOQa17IRBDvMG9Ew4BIEV4yymmn9pAhrJLZa0ik6G_duQv8xuJjMuh-CzycNBVBES41FpmCk6tDHGFxrNiE_Gb4MYLONy_yJK3vI6ImZ9c8u7Db_b_oBJCJpgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118297906</pqid></control><display><type>article</type><title>Estimates for the Quantized Tensor Train Ranks for the Power Functions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Smirnov, M. S. ; Matveev, S. A.</creator><creatorcontrib>Smirnov, M. S. ; Matveev, S. A.</creatorcontrib><description>In this work, we provide theoretical estimates for the ranks of the power functions , in the quantized tensor train (QTT) format for . Such functions and their several generalizations (e.g., ) play an important role in studies of the asymptotic solutions of the aggregation-fragmentation kinetic equations. In order to support the constructed theory we verify the values of QTT-ranks of these functions in practice with the use of the TTSVD procedure and show an agreement between the numerical and analytical results.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080224603734</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Asymptotic methods ; Estimates ; Geometry ; Kinetic equations ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Tensors</subject><ispartof>Lobachevskii journal of mathematics, 2024-07, Vol.45 (7), p.3182-3187</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><rights>Pleiades Publishing, Ltd. 2024.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-ad14618e11065795ff2e5827590c7d620e05d6d41571658434c499b824d70a973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080224603734$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080224603734$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Smirnov, M. S.</creatorcontrib><creatorcontrib>Matveev, S. A.</creatorcontrib><title>Estimates for the Quantized Tensor Train Ranks for the Power Functions</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In this work, we provide theoretical estimates for the ranks of the power functions , in the quantized tensor train (QTT) format for . Such functions and their several generalizations (e.g., ) play an important role in studies of the asymptotic solutions of the aggregation-fragmentation kinetic equations. In order to support the constructed theory we verify the values of QTT-ranks of these functions in practice with the use of the TTSVD procedure and show an agreement between the numerical and analytical results.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Asymptotic methods</subject><subject>Estimates</subject><subject>Geometry</subject><subject>Kinetic equations</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Tensors</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC59VMvnOU0lqh4Nd6DnE3q1s1W5Msor_elBV6EE8zzPu8M8yL0CngcwDKLh5Aa44VJoQJTCVle2gCClSptSD7uc9yudUP0VGMa5xBIcQELeYxde82uVi0fSjSiyvuButT9-2aonI-5mEVbOeLe-tfd9Bt_-lCsRh8nbrex2N00Nq36E5-6xQ9LubVbFmubq6uZ5ersiYMUmkbYAKUA8CCS83bljiuiOQa17IRBDvMG9Ew4BIEV4yymmn9pAhrJLZa0ik6G_duQv8xuJjMuh-CzycNBVBES41FpmCk6tDHGFxrNiE_Gb4MYLONy_yJK3vI6ImZ9c8u7Db_b_oBJCJpgQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Smirnov, M. S.</creator><creator>Matveev, S. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Estimates for the Quantized Tensor Train Ranks for the Power Functions</title><author>Smirnov, M. S. ; Matveev, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-ad14618e11065795ff2e5827590c7d620e05d6d41571658434c499b824d70a973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Asymptotic methods</topic><topic>Estimates</topic><topic>Geometry</topic><topic>Kinetic equations</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, M. S.</creatorcontrib><creatorcontrib>Matveev, S. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov, M. S.</au><au>Matveev, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates for the Quantized Tensor Train Ranks for the Power Functions</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>45</volume><issue>7</issue><spage>3182</spage><epage>3187</epage><pages>3182-3187</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In this work, we provide theoretical estimates for the ranks of the power functions , in the quantized tensor train (QTT) format for . Such functions and their several generalizations (e.g., ) play an important role in studies of the asymptotic solutions of the aggregation-fragmentation kinetic equations. In order to support the constructed theory we verify the values of QTT-ranks of these functions in practice with the use of the TTSVD procedure and show an agreement between the numerical and analytical results.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080224603734</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2024-07, Vol.45 (7), p.3182-3187
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_3118297906
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Asymptotic methods
Estimates
Geometry
Kinetic equations
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
Tensors
title Estimates for the Quantized Tensor Train Ranks for the Power Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20for%20the%20Quantized%20Tensor%20Train%20Ranks%20for%20the%20Power%20Functions&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Smirnov,%20M.%20S.&rft.date=2024-07-01&rft.volume=45&rft.issue=7&rft.spage=3182&rft.epage=3187&rft.pages=3182-3187&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080224603734&rft_dat=%3Cproquest_cross%3E3118297906%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118297906&rft_id=info:pmid/&rfr_iscdi=true