Performance Evaluation and Wing Deformation Analysis of Flapping-Wing Aerial Vehicles with Varying Flapping Parameters and Patterns

There has been significant interest in the field of bio-inspired robotics, particularly in the development of flapping-wing robots from micro to bird size. Most flapping robots use lever-crank mechanisms or servomotors as wing flapping mechanisms. Servomotor-based flapping has the advantage of being...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of robotics and mechatronics 2024-10, Vol.36 (5), p.1143-1155
Hauptverfasser: Afakh, Muhammad Labiyb, Sato, Hidaka, Takesue, Naoyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There has been significant interest in the field of bio-inspired robotics, particularly in the development of flapping-wing robots from micro to bird size. Most flapping robots use lever-crank mechanisms or servomotors as wing flapping mechanisms. Servomotor-based flapping has the advantage of being able to generate various flapping patterns according to amplitude, offset, frequency, waveform, and other factors. However, it is not clear how these factors affect thrust generation. Therefore, this study focuses on the force generation and power consumption in different flapping patterns as well as the wing deformation during the flapping motion to provide some insights into the performance improvement. The results showed that the response characteristics of the actuators caused the thrust to saturate at high frequencies, and that sinusoidal pattern could generally achieve good performance and efficiency.
ISSN:0915-3942
1883-8049
DOI:10.20965/jrm.2024.p1143