Aegis:An Advanced LLM-Based Multi-Agent for Intelligent Functional Safety Engineering
Functional safety is a critical aspect of automotive engineering, encompassing all phases of a vehicle's lifecycle, including design, development, production, operation, and decommissioning. This domain involves highly knowledge-intensive tasks. This paper introduces Aegis: An Advanced LLM-Base...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lu, Shi Qi, Bin Luo, Jiarui Zhang, Yang Liang, Zhanzhao Gao, Zhaowei Deng, Wenke Sun, Lin |
description | Functional safety is a critical aspect of automotive engineering, encompassing all phases of a vehicle's lifecycle, including design, development, production, operation, and decommissioning. This domain involves highly knowledge-intensive tasks. This paper introduces Aegis: An Advanced LLM-Based Multi-Agent for Intelligent Functional Safety Engineering. Aegis is specifically designed to support complex functional safety tasks within the automotive sector. It is tailored to perform Hazard Analysis and Risk Assessment(HARA), document Functional Safety Requirements(FSR), and plan test cases for Automatic Emergency Braking(AEB) systems. The most advanced version, Aegis-Max, leverages Retrieval-Augmented Generation(RAG) and reflective mechanisms to enhance its capability in managing complex, knowledge-intensive tasks. Additionally, targeted prompt refinement by professional functional safety practitioners can significantly optimize Aegis's performance in the functional safety domain. This paper demonstrates the potential of Aegis to improve the efficiency and effectiveness of functional safety processes in automotive engineering. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3118116542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118116542</sourcerecordid><originalsourceid>FETCH-proquest_journals_31181165423</originalsourceid><addsrcrecordid>eNqNi9EKgjAYRkcQJOU7DLoW3KYm3a1QCuyqupahvzIZ_8rNoLdPogfo6jsHzrcgAReCRXnC-YqEzg1xHPNsx9NUBOQuodduL5HK9qWwgZZW1SU6KDfTZTJeR7IH9LSzIz2jB2P018sJG68tKkOvqgP_pgX2GgFGjf2GLDtlHIS_XZNtWdyOp-gx2ucEzteDncb562rBWM5YliZc_Fd9ABfwP8o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118116542</pqid></control><display><type>article</type><title>Aegis:An Advanced LLM-Based Multi-Agent for Intelligent Functional Safety Engineering</title><source>Free E- Journals</source><creator>Lu, Shi ; Qi, Bin ; Luo, Jiarui ; Zhang, Yang ; Liang, Zhanzhao ; Gao, Zhaowei ; Deng, Wenke ; Sun, Lin</creator><creatorcontrib>Lu, Shi ; Qi, Bin ; Luo, Jiarui ; Zhang, Yang ; Liang, Zhanzhao ; Gao, Zhaowei ; Deng, Wenke ; Sun, Lin</creatorcontrib><description>Functional safety is a critical aspect of automotive engineering, encompassing all phases of a vehicle's lifecycle, including design, development, production, operation, and decommissioning. This domain involves highly knowledge-intensive tasks. This paper introduces Aegis: An Advanced LLM-Based Multi-Agent for Intelligent Functional Safety Engineering. Aegis is specifically designed to support complex functional safety tasks within the automotive sector. It is tailored to perform Hazard Analysis and Risk Assessment(HARA), document Functional Safety Requirements(FSR), and plan test cases for Automatic Emergency Braking(AEB) systems. The most advanced version, Aegis-Max, leverages Retrieval-Augmented Generation(RAG) and reflective mechanisms to enhance its capability in managing complex, knowledge-intensive tasks. Additionally, targeted prompt refinement by professional functional safety practitioners can significantly optimize Aegis's performance in the functional safety domain. This paper demonstrates the potential of Aegis to improve the efficiency and effectiveness of functional safety processes in automotive engineering.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Hazard assessment ; Knowledge management ; Multiagent systems ; Task complexity</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lu, Shi</creatorcontrib><creatorcontrib>Qi, Bin</creatorcontrib><creatorcontrib>Luo, Jiarui</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Liang, Zhanzhao</creatorcontrib><creatorcontrib>Gao, Zhaowei</creatorcontrib><creatorcontrib>Deng, Wenke</creatorcontrib><creatorcontrib>Sun, Lin</creatorcontrib><title>Aegis:An Advanced LLM-Based Multi-Agent for Intelligent Functional Safety Engineering</title><title>arXiv.org</title><description>Functional safety is a critical aspect of automotive engineering, encompassing all phases of a vehicle's lifecycle, including design, development, production, operation, and decommissioning. This domain involves highly knowledge-intensive tasks. This paper introduces Aegis: An Advanced LLM-Based Multi-Agent for Intelligent Functional Safety Engineering. Aegis is specifically designed to support complex functional safety tasks within the automotive sector. It is tailored to perform Hazard Analysis and Risk Assessment(HARA), document Functional Safety Requirements(FSR), and plan test cases for Automatic Emergency Braking(AEB) systems. The most advanced version, Aegis-Max, leverages Retrieval-Augmented Generation(RAG) and reflective mechanisms to enhance its capability in managing complex, knowledge-intensive tasks. Additionally, targeted prompt refinement by professional functional safety practitioners can significantly optimize Aegis's performance in the functional safety domain. This paper demonstrates the potential of Aegis to improve the efficiency and effectiveness of functional safety processes in automotive engineering.</description><subject>Hazard assessment</subject><subject>Knowledge management</subject><subject>Multiagent systems</subject><subject>Task complexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi9EKgjAYRkcQJOU7DLoW3KYm3a1QCuyqupahvzIZ_8rNoLdPogfo6jsHzrcgAReCRXnC-YqEzg1xHPNsx9NUBOQuodduL5HK9qWwgZZW1SU6KDfTZTJeR7IH9LSzIz2jB2P018sJG68tKkOvqgP_pgX2GgFGjf2GLDtlHIS_XZNtWdyOp-gx2ucEzteDncb562rBWM5YliZc_Fd9ABfwP8o</recordid><startdate>20241017</startdate><enddate>20241017</enddate><creator>Lu, Shi</creator><creator>Qi, Bin</creator><creator>Luo, Jiarui</creator><creator>Zhang, Yang</creator><creator>Liang, Zhanzhao</creator><creator>Gao, Zhaowei</creator><creator>Deng, Wenke</creator><creator>Sun, Lin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241017</creationdate><title>Aegis:An Advanced LLM-Based Multi-Agent for Intelligent Functional Safety Engineering</title><author>Lu, Shi ; Qi, Bin ; Luo, Jiarui ; Zhang, Yang ; Liang, Zhanzhao ; Gao, Zhaowei ; Deng, Wenke ; Sun, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31181165423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Hazard assessment</topic><topic>Knowledge management</topic><topic>Multiagent systems</topic><topic>Task complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Shi</creatorcontrib><creatorcontrib>Qi, Bin</creatorcontrib><creatorcontrib>Luo, Jiarui</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Liang, Zhanzhao</creatorcontrib><creatorcontrib>Gao, Zhaowei</creatorcontrib><creatorcontrib>Deng, Wenke</creatorcontrib><creatorcontrib>Sun, Lin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Shi</au><au>Qi, Bin</au><au>Luo, Jiarui</au><au>Zhang, Yang</au><au>Liang, Zhanzhao</au><au>Gao, Zhaowei</au><au>Deng, Wenke</au><au>Sun, Lin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Aegis:An Advanced LLM-Based Multi-Agent for Intelligent Functional Safety Engineering</atitle><jtitle>arXiv.org</jtitle><date>2024-10-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Functional safety is a critical aspect of automotive engineering, encompassing all phases of a vehicle's lifecycle, including design, development, production, operation, and decommissioning. This domain involves highly knowledge-intensive tasks. This paper introduces Aegis: An Advanced LLM-Based Multi-Agent for Intelligent Functional Safety Engineering. Aegis is specifically designed to support complex functional safety tasks within the automotive sector. It is tailored to perform Hazard Analysis and Risk Assessment(HARA), document Functional Safety Requirements(FSR), and plan test cases for Automatic Emergency Braking(AEB) systems. The most advanced version, Aegis-Max, leverages Retrieval-Augmented Generation(RAG) and reflective mechanisms to enhance its capability in managing complex, knowledge-intensive tasks. Additionally, targeted prompt refinement by professional functional safety practitioners can significantly optimize Aegis's performance in the functional safety domain. This paper demonstrates the potential of Aegis to improve the efficiency and effectiveness of functional safety processes in automotive engineering.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3118116542 |
source | Free E- Journals |
subjects | Hazard assessment Knowledge management Multiagent systems Task complexity |
title | Aegis:An Advanced LLM-Based Multi-Agent for Intelligent Functional Safety Engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Aegis:An%20Advanced%20LLM-Based%20Multi-Agent%20for%20Intelligent%20Functional%20Safety%20Engineering&rft.jtitle=arXiv.org&rft.au=Lu,%20Shi&rft.date=2024-10-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3118116542%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118116542&rft_id=info:pmid/&rfr_iscdi=true |