Towards Better Performance in Incomplete LDL: Addressing Data Imbalance

Label Distribution Learning (LDL) is a novel machine learning paradigm that addresses the problem of label ambiguity and has found widespread applications. Obtaining complete label distributions in real-world scenarios is challenging, which has led to the emergence of Incomplete Label Distribution L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Kou, Zhiqiang, Xuan, Haoyuan, Wang, Jing, Jia, Yuheng, Geng, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kou, Zhiqiang
Xuan, Haoyuan
Wang, Jing
Jia, Yuheng
Geng, Xin
description Label Distribution Learning (LDL) is a novel machine learning paradigm that addresses the problem of label ambiguity and has found widespread applications. Obtaining complete label distributions in real-world scenarios is challenging, which has led to the emergence of Incomplete Label Distribution Learning (InLDL). However, the existing InLDL methods overlook a crucial aspect of LDL data: the inherent imbalance in label distributions. To address this limitation, we propose \textbf{Incomplete and Imbalance Label Distribution Learning (I\(^2\)LDL)}, a framework that simultaneously handles incomplete labels and imbalanced label distributions. Our method decomposes the label distribution matrix into a low-rank component for frequent labels and a sparse component for rare labels, effectively capturing the structure of both head and tail labels. We optimize the model using the Alternating Direction Method of Multipliers (ADMM) and derive generalization error bounds via Rademacher complexity, providing strong theoretical guarantees. Extensive experiments on 15 real-world datasets demonstrate the effectiveness and robustness of our proposed framework compared to existing InLDL methods.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3118116418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118116418</sourcerecordid><originalsourceid>FETCH-proquest_journals_31181164183</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCJLyHS60FpwZNWlX2Y_QooV7mfQais7YnZFev4IeoNVZnG_GPCElD9JIiAXzre3CMBTJRsSx9Ni5MC9FtYU9OocEN6TG0KB0hdBqyHVlhrFHh3DNrlvY1TWhta1-QKacgny4q_6LV2zeqN6i_-uSrU_H4nAJRjLPCa0rOzOR_qxScp5ynkQ8lf-pN6EnOsM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118116418</pqid></control><display><type>article</type><title>Towards Better Performance in Incomplete LDL: Addressing Data Imbalance</title><source>Free E- Journals</source><creator>Kou, Zhiqiang ; Xuan, Haoyuan ; Wang, Jing ; Jia, Yuheng ; Geng, Xin</creator><creatorcontrib>Kou, Zhiqiang ; Xuan, Haoyuan ; Wang, Jing ; Jia, Yuheng ; Geng, Xin</creatorcontrib><description>Label Distribution Learning (LDL) is a novel machine learning paradigm that addresses the problem of label ambiguity and has found widespread applications. Obtaining complete label distributions in real-world scenarios is challenging, which has led to the emergence of Incomplete Label Distribution Learning (InLDL). However, the existing InLDL methods overlook a crucial aspect of LDL data: the inherent imbalance in label distributions. To address this limitation, we propose \textbf{Incomplete and Imbalance Label Distribution Learning (I\(^2\)LDL)}, a framework that simultaneously handles incomplete labels and imbalanced label distributions. Our method decomposes the label distribution matrix into a low-rank component for frequent labels and a sparse component for rare labels, effectively capturing the structure of both head and tail labels. We optimize the model using the Alternating Direction Method of Multipliers (ADMM) and derive generalization error bounds via Rademacher complexity, providing strong theoretical guarantees. Extensive experiments on 15 real-world datasets demonstrate the effectiveness and robustness of our proposed framework compared to existing InLDL methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Labels ; Machine learning</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kou, Zhiqiang</creatorcontrib><creatorcontrib>Xuan, Haoyuan</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Jia, Yuheng</creatorcontrib><creatorcontrib>Geng, Xin</creatorcontrib><title>Towards Better Performance in Incomplete LDL: Addressing Data Imbalance</title><title>arXiv.org</title><description>Label Distribution Learning (LDL) is a novel machine learning paradigm that addresses the problem of label ambiguity and has found widespread applications. Obtaining complete label distributions in real-world scenarios is challenging, which has led to the emergence of Incomplete Label Distribution Learning (InLDL). However, the existing InLDL methods overlook a crucial aspect of LDL data: the inherent imbalance in label distributions. To address this limitation, we propose \textbf{Incomplete and Imbalance Label Distribution Learning (I\(^2\)LDL)}, a framework that simultaneously handles incomplete labels and imbalanced label distributions. Our method decomposes the label distribution matrix into a low-rank component for frequent labels and a sparse component for rare labels, effectively capturing the structure of both head and tail labels. We optimize the model using the Alternating Direction Method of Multipliers (ADMM) and derive generalization error bounds via Rademacher complexity, providing strong theoretical guarantees. Extensive experiments on 15 real-world datasets demonstrate the effectiveness and robustness of our proposed framework compared to existing InLDL methods.</description><subject>Labels</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNys0KgkAUQOEhCJLyHS60FpwZNWlX2Y_QooV7mfQais7YnZFev4IeoNVZnG_GPCElD9JIiAXzre3CMBTJRsSx9Ni5MC9FtYU9OocEN6TG0KB0hdBqyHVlhrFHh3DNrlvY1TWhta1-QKacgny4q_6LV2zeqN6i_-uSrU_H4nAJRjLPCa0rOzOR_qxScp5ynkQ8lf-pN6EnOsM</recordid><startdate>20241017</startdate><enddate>20241017</enddate><creator>Kou, Zhiqiang</creator><creator>Xuan, Haoyuan</creator><creator>Wang, Jing</creator><creator>Jia, Yuheng</creator><creator>Geng, Xin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241017</creationdate><title>Towards Better Performance in Incomplete LDL: Addressing Data Imbalance</title><author>Kou, Zhiqiang ; Xuan, Haoyuan ; Wang, Jing ; Jia, Yuheng ; Geng, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31181164183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Labels</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Kou, Zhiqiang</creatorcontrib><creatorcontrib>Xuan, Haoyuan</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Jia, Yuheng</creatorcontrib><creatorcontrib>Geng, Xin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kou, Zhiqiang</au><au>Xuan, Haoyuan</au><au>Wang, Jing</au><au>Jia, Yuheng</au><au>Geng, Xin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards Better Performance in Incomplete LDL: Addressing Data Imbalance</atitle><jtitle>arXiv.org</jtitle><date>2024-10-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Label Distribution Learning (LDL) is a novel machine learning paradigm that addresses the problem of label ambiguity and has found widespread applications. Obtaining complete label distributions in real-world scenarios is challenging, which has led to the emergence of Incomplete Label Distribution Learning (InLDL). However, the existing InLDL methods overlook a crucial aspect of LDL data: the inherent imbalance in label distributions. To address this limitation, we propose \textbf{Incomplete and Imbalance Label Distribution Learning (I\(^2\)LDL)}, a framework that simultaneously handles incomplete labels and imbalanced label distributions. Our method decomposes the label distribution matrix into a low-rank component for frequent labels and a sparse component for rare labels, effectively capturing the structure of both head and tail labels. We optimize the model using the Alternating Direction Method of Multipliers (ADMM) and derive generalization error bounds via Rademacher complexity, providing strong theoretical guarantees. Extensive experiments on 15 real-world datasets demonstrate the effectiveness and robustness of our proposed framework compared to existing InLDL methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3118116418
source Free E- Journals
subjects Labels
Machine learning
title Towards Better Performance in Incomplete LDL: Addressing Data Imbalance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20Better%20Performance%20in%20Incomplete%20LDL:%20Addressing%20Data%20Imbalance&rft.jtitle=arXiv.org&rft.au=Kou,%20Zhiqiang&rft.date=2024-10-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3118116418%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118116418&rft_id=info:pmid/&rfr_iscdi=true