Stability of optimal spherical codes
For many extremal configurations of points on a sphere, the linear programming approach can be used to show their optimality. In this paper we establish the general framework for showing stability of such configurations and use this framework to prove the stability of the two spherical codes formed...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2024-11, Vol.205 (3), p.455-475 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 475 |
---|---|
container_issue | 3 |
container_start_page | 455 |
container_title | Monatshefte für Mathematik |
container_volume | 205 |
creator | Böröczky, Károly J. Glazyrin, Alexey |
description | For many extremal configurations of points on a sphere, the linear programming approach can be used to show their optimality. In this paper we establish the general framework for showing stability of such configurations and use this framework to prove the stability of the two spherical codes formed by minimal vectors of the lattice
E
8
and of the Leech lattice. |
doi_str_mv | 10.1007/s00605-024-02021-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3117973623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117973623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-7755f34e53195e7d5838874b72e711a06326d0224b87cd7fc21c2056097acd423</originalsourceid><addsrcrecordid>eNp9kDtPxDAQhC0EEsfBH6CKBK1hd_1KSnTiJZ1EAdRW4jiQUzgHO1fcv8cQJDqK1W4xMzv6GDtHuEIAc50ANCgOJPMAIdcHbIFSaK6gxEO2ACDNK1LqmJ2ktAEAFLpasMvnqW76oZ_2ReiKME79Rz0UaXz3sXf5cqH16ZQddfWQ_NnvXrLXu9uX1QNfP90_rm7W3JGUEzdGqU5IrwRWyptWlaIsjWwMeYNYgxakWyCSTWlcazpH6AiUhsrUrpUkluxizh1j-Nz5NNlN2MVtfmkFoqmM0CSyimaViyGl6Ds7xtw67i2C_aZhZxo207A_NKzOJjGbUhZv33z8i_7H9QUurl8H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117973623</pqid></control><display><type>article</type><title>Stability of optimal spherical codes</title><source>SpringerNature Journals</source><creator>Böröczky, Károly J. ; Glazyrin, Alexey</creator><creatorcontrib>Böröczky, Károly J. ; Glazyrin, Alexey</creatorcontrib><description>For many extremal configurations of points on a sphere, the linear programming approach can be used to show their optimality. In this paper we establish the general framework for showing stability of such configurations and use this framework to prove the stability of the two spherical codes formed by minimal vectors of the lattice
E
8
and of the Leech lattice.</description><identifier>ISSN: 0026-9255</identifier><identifier>EISSN: 1436-5081</identifier><identifier>DOI: 10.1007/s00605-024-02021-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Configurations ; Linear programming ; Mathematics ; Mathematics and Statistics ; Optimization ; Stability</subject><ispartof>Monatshefte für Mathematik, 2024-11, Vol.205 (3), p.455-475</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-7755f34e53195e7d5838874b72e711a06326d0224b87cd7fc21c2056097acd423</cites><orcidid>0000-0002-2882-4496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00605-024-02021-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00605-024-02021-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Böröczky, Károly J.</creatorcontrib><creatorcontrib>Glazyrin, Alexey</creatorcontrib><title>Stability of optimal spherical codes</title><title>Monatshefte für Mathematik</title><addtitle>Monatsh Math</addtitle><description>For many extremal configurations of points on a sphere, the linear programming approach can be used to show their optimality. In this paper we establish the general framework for showing stability of such configurations and use this framework to prove the stability of the two spherical codes formed by minimal vectors of the lattice
E
8
and of the Leech lattice.</description><subject>Configurations</subject><subject>Linear programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Stability</subject><issn>0026-9255</issn><issn>1436-5081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kDtPxDAQhC0EEsfBH6CKBK1hd_1KSnTiJZ1EAdRW4jiQUzgHO1fcv8cQJDqK1W4xMzv6GDtHuEIAc50ANCgOJPMAIdcHbIFSaK6gxEO2ACDNK1LqmJ2ktAEAFLpasMvnqW76oZ_2ReiKME79Rz0UaXz3sXf5cqH16ZQddfWQ_NnvXrLXu9uX1QNfP90_rm7W3JGUEzdGqU5IrwRWyptWlaIsjWwMeYNYgxakWyCSTWlcazpH6AiUhsrUrpUkluxizh1j-Nz5NNlN2MVtfmkFoqmM0CSyimaViyGl6Ds7xtw67i2C_aZhZxo207A_NKzOJjGbUhZv33z8i_7H9QUurl8H</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Böröczky, Károly J.</creator><creator>Glazyrin, Alexey</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2882-4496</orcidid></search><sort><creationdate>20241101</creationdate><title>Stability of optimal spherical codes</title><author>Böröczky, Károly J. ; Glazyrin, Alexey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-7755f34e53195e7d5838874b72e711a06326d0224b87cd7fc21c2056097acd423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Configurations</topic><topic>Linear programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böröczky, Károly J.</creatorcontrib><creatorcontrib>Glazyrin, Alexey</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Monatshefte für Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böröczky, Károly J.</au><au>Glazyrin, Alexey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of optimal spherical codes</atitle><jtitle>Monatshefte für Mathematik</jtitle><stitle>Monatsh Math</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>205</volume><issue>3</issue><spage>455</spage><epage>475</epage><pages>455-475</pages><issn>0026-9255</issn><eissn>1436-5081</eissn><abstract>For many extremal configurations of points on a sphere, the linear programming approach can be used to show their optimality. In this paper we establish the general framework for showing stability of such configurations and use this framework to prove the stability of the two spherical codes formed by minimal vectors of the lattice
E
8
and of the Leech lattice.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00605-024-02021-6</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-2882-4496</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-9255 |
ispartof | Monatshefte für Mathematik, 2024-11, Vol.205 (3), p.455-475 |
issn | 0026-9255 1436-5081 |
language | eng |
recordid | cdi_proquest_journals_3117973623 |
source | SpringerNature Journals |
subjects | Configurations Linear programming Mathematics Mathematics and Statistics Optimization Stability |
title | Stability of optimal spherical codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20optimal%20spherical%20codes&rft.jtitle=Monatshefte%20f%C3%BCr%20Mathematik&rft.au=B%C3%B6r%C3%B6czky,%20K%C3%A1roly%20J.&rft.date=2024-11-01&rft.volume=205&rft.issue=3&rft.spage=455&rft.epage=475&rft.pages=455-475&rft.issn=0026-9255&rft.eissn=1436-5081&rft_id=info:doi/10.1007/s00605-024-02021-6&rft_dat=%3Cproquest_cross%3E3117973623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117973623&rft_id=info:pmid/&rfr_iscdi=true |