Stability of optimal spherical codes

For many extremal configurations of points on a sphere, the linear programming approach can be used to show their optimality. In this paper we establish the general framework for showing stability of such configurations and use this framework to prove the stability of the two spherical codes formed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2024-11, Vol.205 (3), p.455-475
Hauptverfasser: Böröczky, Károly J., Glazyrin, Alexey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 475
container_issue 3
container_start_page 455
container_title Monatshefte für Mathematik
container_volume 205
creator Böröczky, Károly J.
Glazyrin, Alexey
description For many extremal configurations of points on a sphere, the linear programming approach can be used to show their optimality. In this paper we establish the general framework for showing stability of such configurations and use this framework to prove the stability of the two spherical codes formed by minimal vectors of the lattice E 8 and of the Leech lattice.
doi_str_mv 10.1007/s00605-024-02021-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3117973623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117973623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-7755f34e53195e7d5838874b72e711a06326d0224b87cd7fc21c2056097acd423</originalsourceid><addsrcrecordid>eNp9kDtPxDAQhC0EEsfBH6CKBK1hd_1KSnTiJZ1EAdRW4jiQUzgHO1fcv8cQJDqK1W4xMzv6GDtHuEIAc50ANCgOJPMAIdcHbIFSaK6gxEO2ACDNK1LqmJ2ktAEAFLpasMvnqW76oZ_2ReiKME79Rz0UaXz3sXf5cqH16ZQddfWQ_NnvXrLXu9uX1QNfP90_rm7W3JGUEzdGqU5IrwRWyptWlaIsjWwMeYNYgxakWyCSTWlcazpH6AiUhsrUrpUkluxizh1j-Nz5NNlN2MVtfmkFoqmM0CSyimaViyGl6Ds7xtw67i2C_aZhZxo207A_NKzOJjGbUhZv33z8i_7H9QUurl8H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117973623</pqid></control><display><type>article</type><title>Stability of optimal spherical codes</title><source>SpringerNature Journals</source><creator>Böröczky, Károly J. ; Glazyrin, Alexey</creator><creatorcontrib>Böröczky, Károly J. ; Glazyrin, Alexey</creatorcontrib><description>For many extremal configurations of points on a sphere, the linear programming approach can be used to show their optimality. In this paper we establish the general framework for showing stability of such configurations and use this framework to prove the stability of the two spherical codes formed by minimal vectors of the lattice E 8 and of the Leech lattice.</description><identifier>ISSN: 0026-9255</identifier><identifier>EISSN: 1436-5081</identifier><identifier>DOI: 10.1007/s00605-024-02021-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Configurations ; Linear programming ; Mathematics ; Mathematics and Statistics ; Optimization ; Stability</subject><ispartof>Monatshefte für Mathematik, 2024-11, Vol.205 (3), p.455-475</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-7755f34e53195e7d5838874b72e711a06326d0224b87cd7fc21c2056097acd423</cites><orcidid>0000-0002-2882-4496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00605-024-02021-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00605-024-02021-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Böröczky, Károly J.</creatorcontrib><creatorcontrib>Glazyrin, Alexey</creatorcontrib><title>Stability of optimal spherical codes</title><title>Monatshefte für Mathematik</title><addtitle>Monatsh Math</addtitle><description>For many extremal configurations of points on a sphere, the linear programming approach can be used to show their optimality. In this paper we establish the general framework for showing stability of such configurations and use this framework to prove the stability of the two spherical codes formed by minimal vectors of the lattice E 8 and of the Leech lattice.</description><subject>Configurations</subject><subject>Linear programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Stability</subject><issn>0026-9255</issn><issn>1436-5081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kDtPxDAQhC0EEsfBH6CKBK1hd_1KSnTiJZ1EAdRW4jiQUzgHO1fcv8cQJDqK1W4xMzv6GDtHuEIAc50ANCgOJPMAIdcHbIFSaK6gxEO2ACDNK1LqmJ2ktAEAFLpasMvnqW76oZ_2ReiKME79Rz0UaXz3sXf5cqH16ZQddfWQ_NnvXrLXu9uX1QNfP90_rm7W3JGUEzdGqU5IrwRWyptWlaIsjWwMeYNYgxakWyCSTWlcazpH6AiUhsrUrpUkluxizh1j-Nz5NNlN2MVtfmkFoqmM0CSyimaViyGl6Ds7xtw67i2C_aZhZxo207A_NKzOJjGbUhZv33z8i_7H9QUurl8H</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Böröczky, Károly J.</creator><creator>Glazyrin, Alexey</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2882-4496</orcidid></search><sort><creationdate>20241101</creationdate><title>Stability of optimal spherical codes</title><author>Böröczky, Károly J. ; Glazyrin, Alexey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-7755f34e53195e7d5838874b72e711a06326d0224b87cd7fc21c2056097acd423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Configurations</topic><topic>Linear programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böröczky, Károly J.</creatorcontrib><creatorcontrib>Glazyrin, Alexey</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Monatshefte für Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böröczky, Károly J.</au><au>Glazyrin, Alexey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of optimal spherical codes</atitle><jtitle>Monatshefte für Mathematik</jtitle><stitle>Monatsh Math</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>205</volume><issue>3</issue><spage>455</spage><epage>475</epage><pages>455-475</pages><issn>0026-9255</issn><eissn>1436-5081</eissn><abstract>For many extremal configurations of points on a sphere, the linear programming approach can be used to show their optimality. In this paper we establish the general framework for showing stability of such configurations and use this framework to prove the stability of the two spherical codes formed by minimal vectors of the lattice E 8 and of the Leech lattice.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00605-024-02021-6</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-2882-4496</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-9255
ispartof Monatshefte für Mathematik, 2024-11, Vol.205 (3), p.455-475
issn 0026-9255
1436-5081
language eng
recordid cdi_proquest_journals_3117973623
source SpringerNature Journals
subjects Configurations
Linear programming
Mathematics
Mathematics and Statistics
Optimization
Stability
title Stability of optimal spherical codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20optimal%20spherical%20codes&rft.jtitle=Monatshefte%20f%C3%BCr%20Mathematik&rft.au=B%C3%B6r%C3%B6czky,%20K%C3%A1roly%20J.&rft.date=2024-11-01&rft.volume=205&rft.issue=3&rft.spage=455&rft.epage=475&rft.pages=455-475&rft.issn=0026-9255&rft.eissn=1436-5081&rft_id=info:doi/10.1007/s00605-024-02021-6&rft_dat=%3Cproquest_cross%3E3117973623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117973623&rft_id=info:pmid/&rfr_iscdi=true