Nested barycentric coordinate system as an explicit feature map for polyhedra approximation and learning tasks
We introduce a new embedding technique based on a nested barycentric coordinate system. We show that our embedding can be used to transform the problems of polyhedron approximation, piecewise linear classification and convex regression into one of finding a linear classifier or regressor in a higher...
Gespeichert in:
Veröffentlicht in: | Machine learning 2024-10, Vol.113 (10), p.7807-7840 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7840 |
---|---|
container_issue | 10 |
container_start_page | 7807 |
container_title | Machine learning |
container_volume | 113 |
creator | Gottlieb, Lee-Ad Kaufman, Eran Kontorovich, Aryeh Nivasch, Gabriel Pele, Ofir |
description | We introduce a new embedding technique based on a nested barycentric coordinate system. We show that our embedding can be used to transform the problems of polyhedron approximation, piecewise linear classification and convex regression into one of finding a
linear
classifier or regressor in a higher dimensional (but nevertheless quite sparse) representation. Our embedding maps a piecewise linear function into an everywhere-linear function, and allows us to invoke well-known algorithms for the latter problem to solve the former. We explain the applications of our embedding to the problems of approximating separating polyhedra—in fact, it can approximate any convex body and unions of convex bodies—as well as to classification by separating polyhedra, and to piecewise linear regression. |
doi_str_mv | 10.1007/s10994-024-06596-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3117777985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117777985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-27bd0469d444fe2e674bf075386b4391aa88416addea1e4ec139c3ddc59059f43</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8V5M2SZujLH7Bohc9hzSZrl27SU2y0P33Rit4c2CYw7z35s1D6JKSa0pIfRMpkZIVpMwtuBTFdIQWlNdVQbjgx2hBmoYXgpb8FJ3FuCWElKIRC-SeISawuNXhYMCl0BtsvA-2dzoBjoe83WEdsXYYpnHoTZ9wBzrtA-CdHnHnAx79cHgHGzTW4xj81O906r3LHIsH0MH1boOTjh_xHJ10eohw8TuX6O3-7nX1WKxfHp5Wt-vClIyloqxbS5iQljHWQQmiZm1Hal41omWVpFo3DaNCWwuaAgNDK2kqaw2XhMuOVUt0NetmO5_7_KLa-n1w-aSqKK1zyYZnVDmjTPAxBujUGLL3cFCUqO9c1Zyryrmqn1zVlEnVTIoZ7DYQ_qT_YX0BR89-Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117777985</pqid></control><display><type>article</type><title>Nested barycentric coordinate system as an explicit feature map for polyhedra approximation and learning tasks</title><source>SpringerLink Journals</source><creator>Gottlieb, Lee-Ad ; Kaufman, Eran ; Kontorovich, Aryeh ; Nivasch, Gabriel ; Pele, Ofir</creator><creatorcontrib>Gottlieb, Lee-Ad ; Kaufman, Eran ; Kontorovich, Aryeh ; Nivasch, Gabriel ; Pele, Ofir</creatorcontrib><description>We introduce a new embedding technique based on a nested barycentric coordinate system. We show that our embedding can be used to transform the problems of polyhedron approximation, piecewise linear classification and convex regression into one of finding a
linear
classifier or regressor in a higher dimensional (but nevertheless quite sparse) representation. Our embedding maps a piecewise linear function into an everywhere-linear function, and allows us to invoke well-known algorithms for the latter problem to solve the former. We explain the applications of our embedding to the problems of approximating separating polyhedra—in fact, it can approximate any convex body and unions of convex bodies—as well as to classification by separating polyhedra, and to piecewise linear regression.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-024-06596-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Artificial Intelligence ; Classification ; Cognitive tasks ; Computer Science ; Control ; Coordinates ; Embedding ; Feature maps ; Hypotheses ; Linear functions ; Machine Learning ; Mechatronics ; Natural Language Processing (NLP) ; Polyhedra ; Robotics ; Simulation and Modeling</subject><ispartof>Machine learning, 2024-10, Vol.113 (10), p.7807-7840</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-27bd0469d444fe2e674bf075386b4391aa88416addea1e4ec139c3ddc59059f43</cites><orcidid>0000-0003-3355-351X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-024-06596-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-024-06596-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gottlieb, Lee-Ad</creatorcontrib><creatorcontrib>Kaufman, Eran</creatorcontrib><creatorcontrib>Kontorovich, Aryeh</creatorcontrib><creatorcontrib>Nivasch, Gabriel</creatorcontrib><creatorcontrib>Pele, Ofir</creatorcontrib><title>Nested barycentric coordinate system as an explicit feature map for polyhedra approximation and learning tasks</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>We introduce a new embedding technique based on a nested barycentric coordinate system. We show that our embedding can be used to transform the problems of polyhedron approximation, piecewise linear classification and convex regression into one of finding a
linear
classifier or regressor in a higher dimensional (but nevertheless quite sparse) representation. Our embedding maps a piecewise linear function into an everywhere-linear function, and allows us to invoke well-known algorithms for the latter problem to solve the former. We explain the applications of our embedding to the problems of approximating separating polyhedra—in fact, it can approximate any convex body and unions of convex bodies—as well as to classification by separating polyhedra, and to piecewise linear regression.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Cognitive tasks</subject><subject>Computer Science</subject><subject>Control</subject><subject>Coordinates</subject><subject>Embedding</subject><subject>Feature maps</subject><subject>Hypotheses</subject><subject>Linear functions</subject><subject>Machine Learning</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Polyhedra</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UE1LxDAQDaLguvoHPAU8V5M2SZujLH7Bohc9hzSZrl27SU2y0P33Rit4c2CYw7z35s1D6JKSa0pIfRMpkZIVpMwtuBTFdIQWlNdVQbjgx2hBmoYXgpb8FJ3FuCWElKIRC-SeISawuNXhYMCl0BtsvA-2dzoBjoe83WEdsXYYpnHoTZ9wBzrtA-CdHnHnAx79cHgHGzTW4xj81O906r3LHIsH0MH1boOTjh_xHJ10eohw8TuX6O3-7nX1WKxfHp5Wt-vClIyloqxbS5iQljHWQQmiZm1Hal41omWVpFo3DaNCWwuaAgNDK2kqaw2XhMuOVUt0NetmO5_7_KLa-n1w-aSqKK1zyYZnVDmjTPAxBujUGLL3cFCUqO9c1Zyryrmqn1zVlEnVTIoZ7DYQ_qT_YX0BR89-Fg</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Gottlieb, Lee-Ad</creator><creator>Kaufman, Eran</creator><creator>Kontorovich, Aryeh</creator><creator>Nivasch, Gabriel</creator><creator>Pele, Ofir</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3355-351X</orcidid></search><sort><creationdate>20241001</creationdate><title>Nested barycentric coordinate system as an explicit feature map for polyhedra approximation and learning tasks</title><author>Gottlieb, Lee-Ad ; Kaufman, Eran ; Kontorovich, Aryeh ; Nivasch, Gabriel ; Pele, Ofir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-27bd0469d444fe2e674bf075386b4391aa88416addea1e4ec139c3ddc59059f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Cognitive tasks</topic><topic>Computer Science</topic><topic>Control</topic><topic>Coordinates</topic><topic>Embedding</topic><topic>Feature maps</topic><topic>Hypotheses</topic><topic>Linear functions</topic><topic>Machine Learning</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Polyhedra</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gottlieb, Lee-Ad</creatorcontrib><creatorcontrib>Kaufman, Eran</creatorcontrib><creatorcontrib>Kontorovich, Aryeh</creatorcontrib><creatorcontrib>Nivasch, Gabriel</creatorcontrib><creatorcontrib>Pele, Ofir</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gottlieb, Lee-Ad</au><au>Kaufman, Eran</au><au>Kontorovich, Aryeh</au><au>Nivasch, Gabriel</au><au>Pele, Ofir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nested barycentric coordinate system as an explicit feature map for polyhedra approximation and learning tasks</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>113</volume><issue>10</issue><spage>7807</spage><epage>7840</epage><pages>7807-7840</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>We introduce a new embedding technique based on a nested barycentric coordinate system. We show that our embedding can be used to transform the problems of polyhedron approximation, piecewise linear classification and convex regression into one of finding a
linear
classifier or regressor in a higher dimensional (but nevertheless quite sparse) representation. Our embedding maps a piecewise linear function into an everywhere-linear function, and allows us to invoke well-known algorithms for the latter problem to solve the former. We explain the applications of our embedding to the problems of approximating separating polyhedra—in fact, it can approximate any convex body and unions of convex bodies—as well as to classification by separating polyhedra, and to piecewise linear regression.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-024-06596-x</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-3355-351X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6125 |
ispartof | Machine learning, 2024-10, Vol.113 (10), p.7807-7840 |
issn | 0885-6125 1573-0565 |
language | eng |
recordid | cdi_proquest_journals_3117777985 |
source | SpringerLink Journals |
subjects | Algorithms Approximation Artificial Intelligence Classification Cognitive tasks Computer Science Control Coordinates Embedding Feature maps Hypotheses Linear functions Machine Learning Mechatronics Natural Language Processing (NLP) Polyhedra Robotics Simulation and Modeling |
title | Nested barycentric coordinate system as an explicit feature map for polyhedra approximation and learning tasks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nested%20barycentric%20coordinate%20system%20as%20an%20explicit%20feature%20map%20for%20polyhedra%20approximation%20and%20learning%20tasks&rft.jtitle=Machine%20learning&rft.au=Gottlieb,%20Lee-Ad&rft.date=2024-10-01&rft.volume=113&rft.issue=10&rft.spage=7807&rft.epage=7840&rft.pages=7807-7840&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-024-06596-x&rft_dat=%3Cproquest_cross%3E3117777985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117777985&rft_id=info:pmid/&rfr_iscdi=true |