Nested barycentric coordinate system as an explicit feature map for polyhedra approximation and learning tasks

We introduce a new embedding technique based on a nested barycentric coordinate system. We show that our embedding can be used to transform the problems of polyhedron approximation, piecewise linear classification and convex regression into one of finding a linear classifier or regressor in a higher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2024-10, Vol.113 (10), p.7807-7840
Hauptverfasser: Gottlieb, Lee-Ad, Kaufman, Eran, Kontorovich, Aryeh, Nivasch, Gabriel, Pele, Ofir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7840
container_issue 10
container_start_page 7807
container_title Machine learning
container_volume 113
creator Gottlieb, Lee-Ad
Kaufman, Eran
Kontorovich, Aryeh
Nivasch, Gabriel
Pele, Ofir
description We introduce a new embedding technique based on a nested barycentric coordinate system. We show that our embedding can be used to transform the problems of polyhedron approximation, piecewise linear classification and convex regression into one of finding a linear classifier or regressor in a higher dimensional (but nevertheless quite sparse) representation. Our embedding maps a piecewise linear function into an everywhere-linear function, and allows us to invoke well-known algorithms for the latter problem to solve the former. We explain the applications of our embedding to the problems of approximating separating polyhedra—in fact, it can approximate any convex body and unions of convex bodies—as well as to classification by separating polyhedra, and to piecewise linear regression.
doi_str_mv 10.1007/s10994-024-06596-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3117777985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117777985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-27bd0469d444fe2e674bf075386b4391aa88416addea1e4ec139c3ddc59059f43</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8V5M2SZujLH7Bohc9hzSZrl27SU2y0P33Rit4c2CYw7z35s1D6JKSa0pIfRMpkZIVpMwtuBTFdIQWlNdVQbjgx2hBmoYXgpb8FJ3FuCWElKIRC-SeISawuNXhYMCl0BtsvA-2dzoBjoe83WEdsXYYpnHoTZ9wBzrtA-CdHnHnAx79cHgHGzTW4xj81O906r3LHIsH0MH1boOTjh_xHJ10eohw8TuX6O3-7nX1WKxfHp5Wt-vClIyloqxbS5iQljHWQQmiZm1Hal41omWVpFo3DaNCWwuaAgNDK2kqaw2XhMuOVUt0NetmO5_7_KLa-n1w-aSqKK1zyYZnVDmjTPAxBujUGLL3cFCUqO9c1Zyryrmqn1zVlEnVTIoZ7DYQ_qT_YX0BR89-Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117777985</pqid></control><display><type>article</type><title>Nested barycentric coordinate system as an explicit feature map for polyhedra approximation and learning tasks</title><source>SpringerLink Journals</source><creator>Gottlieb, Lee-Ad ; Kaufman, Eran ; Kontorovich, Aryeh ; Nivasch, Gabriel ; Pele, Ofir</creator><creatorcontrib>Gottlieb, Lee-Ad ; Kaufman, Eran ; Kontorovich, Aryeh ; Nivasch, Gabriel ; Pele, Ofir</creatorcontrib><description>We introduce a new embedding technique based on a nested barycentric coordinate system. We show that our embedding can be used to transform the problems of polyhedron approximation, piecewise linear classification and convex regression into one of finding a linear classifier or regressor in a higher dimensional (but nevertheless quite sparse) representation. Our embedding maps a piecewise linear function into an everywhere-linear function, and allows us to invoke well-known algorithms for the latter problem to solve the former. We explain the applications of our embedding to the problems of approximating separating polyhedra—in fact, it can approximate any convex body and unions of convex bodies—as well as to classification by separating polyhedra, and to piecewise linear regression.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-024-06596-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Artificial Intelligence ; Classification ; Cognitive tasks ; Computer Science ; Control ; Coordinates ; Embedding ; Feature maps ; Hypotheses ; Linear functions ; Machine Learning ; Mechatronics ; Natural Language Processing (NLP) ; Polyhedra ; Robotics ; Simulation and Modeling</subject><ispartof>Machine learning, 2024-10, Vol.113 (10), p.7807-7840</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-27bd0469d444fe2e674bf075386b4391aa88416addea1e4ec139c3ddc59059f43</cites><orcidid>0000-0003-3355-351X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-024-06596-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-024-06596-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gottlieb, Lee-Ad</creatorcontrib><creatorcontrib>Kaufman, Eran</creatorcontrib><creatorcontrib>Kontorovich, Aryeh</creatorcontrib><creatorcontrib>Nivasch, Gabriel</creatorcontrib><creatorcontrib>Pele, Ofir</creatorcontrib><title>Nested barycentric coordinate system as an explicit feature map for polyhedra approximation and learning tasks</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>We introduce a new embedding technique based on a nested barycentric coordinate system. We show that our embedding can be used to transform the problems of polyhedron approximation, piecewise linear classification and convex regression into one of finding a linear classifier or regressor in a higher dimensional (but nevertheless quite sparse) representation. Our embedding maps a piecewise linear function into an everywhere-linear function, and allows us to invoke well-known algorithms for the latter problem to solve the former. We explain the applications of our embedding to the problems of approximating separating polyhedra—in fact, it can approximate any convex body and unions of convex bodies—as well as to classification by separating polyhedra, and to piecewise linear regression.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Cognitive tasks</subject><subject>Computer Science</subject><subject>Control</subject><subject>Coordinates</subject><subject>Embedding</subject><subject>Feature maps</subject><subject>Hypotheses</subject><subject>Linear functions</subject><subject>Machine Learning</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Polyhedra</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UE1LxDAQDaLguvoHPAU8V5M2SZujLH7Bohc9hzSZrl27SU2y0P33Rit4c2CYw7z35s1D6JKSa0pIfRMpkZIVpMwtuBTFdIQWlNdVQbjgx2hBmoYXgpb8FJ3FuCWElKIRC-SeISawuNXhYMCl0BtsvA-2dzoBjoe83WEdsXYYpnHoTZ9wBzrtA-CdHnHnAx79cHgHGzTW4xj81O906r3LHIsH0MH1boOTjh_xHJ10eohw8TuX6O3-7nX1WKxfHp5Wt-vClIyloqxbS5iQljHWQQmiZm1Hal41omWVpFo3DaNCWwuaAgNDK2kqaw2XhMuOVUt0NetmO5_7_KLa-n1w-aSqKK1zyYZnVDmjTPAxBujUGLL3cFCUqO9c1Zyryrmqn1zVlEnVTIoZ7DYQ_qT_YX0BR89-Fg</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Gottlieb, Lee-Ad</creator><creator>Kaufman, Eran</creator><creator>Kontorovich, Aryeh</creator><creator>Nivasch, Gabriel</creator><creator>Pele, Ofir</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3355-351X</orcidid></search><sort><creationdate>20241001</creationdate><title>Nested barycentric coordinate system as an explicit feature map for polyhedra approximation and learning tasks</title><author>Gottlieb, Lee-Ad ; Kaufman, Eran ; Kontorovich, Aryeh ; Nivasch, Gabriel ; Pele, Ofir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-27bd0469d444fe2e674bf075386b4391aa88416addea1e4ec139c3ddc59059f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Cognitive tasks</topic><topic>Computer Science</topic><topic>Control</topic><topic>Coordinates</topic><topic>Embedding</topic><topic>Feature maps</topic><topic>Hypotheses</topic><topic>Linear functions</topic><topic>Machine Learning</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Polyhedra</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gottlieb, Lee-Ad</creatorcontrib><creatorcontrib>Kaufman, Eran</creatorcontrib><creatorcontrib>Kontorovich, Aryeh</creatorcontrib><creatorcontrib>Nivasch, Gabriel</creatorcontrib><creatorcontrib>Pele, Ofir</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gottlieb, Lee-Ad</au><au>Kaufman, Eran</au><au>Kontorovich, Aryeh</au><au>Nivasch, Gabriel</au><au>Pele, Ofir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nested barycentric coordinate system as an explicit feature map for polyhedra approximation and learning tasks</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>113</volume><issue>10</issue><spage>7807</spage><epage>7840</epage><pages>7807-7840</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>We introduce a new embedding technique based on a nested barycentric coordinate system. We show that our embedding can be used to transform the problems of polyhedron approximation, piecewise linear classification and convex regression into one of finding a linear classifier or regressor in a higher dimensional (but nevertheless quite sparse) representation. Our embedding maps a piecewise linear function into an everywhere-linear function, and allows us to invoke well-known algorithms for the latter problem to solve the former. We explain the applications of our embedding to the problems of approximating separating polyhedra—in fact, it can approximate any convex body and unions of convex bodies—as well as to classification by separating polyhedra, and to piecewise linear regression.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-024-06596-x</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-3355-351X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 2024-10, Vol.113 (10), p.7807-7840
issn 0885-6125
1573-0565
language eng
recordid cdi_proquest_journals_3117777985
source SpringerLink Journals
subjects Algorithms
Approximation
Artificial Intelligence
Classification
Cognitive tasks
Computer Science
Control
Coordinates
Embedding
Feature maps
Hypotheses
Linear functions
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Polyhedra
Robotics
Simulation and Modeling
title Nested barycentric coordinate system as an explicit feature map for polyhedra approximation and learning tasks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nested%20barycentric%20coordinate%20system%20as%20an%20explicit%20feature%20map%20for%20polyhedra%20approximation%20and%20learning%20tasks&rft.jtitle=Machine%20learning&rft.au=Gottlieb,%20Lee-Ad&rft.date=2024-10-01&rft.volume=113&rft.issue=10&rft.spage=7807&rft.epage=7840&rft.pages=7807-7840&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-024-06596-x&rft_dat=%3Cproquest_cross%3E3117777985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117777985&rft_id=info:pmid/&rfr_iscdi=true