Studies on high quality GaN/AlN deposited on glass substrates by radio-frequency reactive sputtering

In this study, we employed radio frequency magnetron sputtering technology with pure gallium to deposit high-quality GaN thin films onto glass substrates. The deposition process was fine-tuned to optimize the GaN crystal quality. To further enhance the crystal quality of the GaN films grown on glass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2024-11, Vol.130 (11), Article 801
Hauptverfasser: Liu, Wei-Sheng, Wu, Sui-Hua, Balaji, G., Huang, Li-Cheng, Chi, Chung-Kai, Hu, Kuo-Jui, Kuo, Hsing-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 130
creator Liu, Wei-Sheng
Wu, Sui-Hua
Balaji, G.
Huang, Li-Cheng
Chi, Chung-Kai
Hu, Kuo-Jui
Kuo, Hsing-Chun
description In this study, we employed radio frequency magnetron sputtering technology with pure gallium to deposit high-quality GaN thin films onto glass substrates. The deposition process was fine-tuned to optimize the GaN crystal quality. To further enhance the crystal quality of the GaN films grown on glass substrates, we introduced an AlN buffer layer which was also sputter deposited in the same chamber. For the reactive sputtering process, we utilized pure 6 N nitrogen as the working gas, and the thin-film deposition temperature was maintained at 600 °C. Comprehensive investigations were conducted on the GaN thin films to assess their chemical composition, structural properties, optoelectronic characteristics, and morphology. X-ray diffraction measurements of the GaN thin films revealed a crystalline phase of GaN (002) with a 2θ angle of approximately 34.2° and a full width at half maximum of 0.85°. Low-temperature photoluminescence spectroscopy unveiled a band-edge emission at 3.36 eV (369 nm) in the low-temperature photoluminescence spectrum. Our research findings conclusively demonstrate the suitability of radio-frequency magnetron sputtering for depositing high-quality GaN thin films on glass substrates. These GaN films exhibit significant potential for applications in several optoelectronic devices.
doi_str_mv 10.1007/s00339-024-07960-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3117519566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117519566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-83c6774d9c681e8eac99a941917864ff46935ec8cacd34126a82f7f5006089693</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMcPcLLEOXT9iB0fqwoKUlUOwNlyHad1FZLUdpD697gUiRt7Wa12ZnZ2ELoj8EAA5DQCMKYKoLwAqQQU7AxNCGe0AMHgHE1AcVlUTIlLdBXjDnJxSieofktj7V3EfYe3frPF-9G0Ph3wwqyms3aFazf00SdXHxGb1sSI47iOKZiUWesDDqb2fdEEtx9dZ_PsjE3-y-E4jCm54LvNDbpoTBvd7W-_Rh9Pj-_z52L5uniZz5aFpQAp27NCSl4rKyriqqyjlFGcKCIrwZuGC8VKZytrbM04ocJUtJFNCSCgUnl5je5PukPos5uY9K4fQ5dPakaILIkqhcgoekLZ0McYXKOH4D9NOGgC-pimPqWpc5r6J03NMomdSHE4fuTCn_Q_rG-EeHfZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117519566</pqid></control><display><type>article</type><title>Studies on high quality GaN/AlN deposited on glass substrates by radio-frequency reactive sputtering</title><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Wei-Sheng ; Wu, Sui-Hua ; Balaji, G. ; Huang, Li-Cheng ; Chi, Chung-Kai ; Hu, Kuo-Jui ; Kuo, Hsing-Chun</creator><creatorcontrib>Liu, Wei-Sheng ; Wu, Sui-Hua ; Balaji, G. ; Huang, Li-Cheng ; Chi, Chung-Kai ; Hu, Kuo-Jui ; Kuo, Hsing-Chun</creatorcontrib><description>In this study, we employed radio frequency magnetron sputtering technology with pure gallium to deposit high-quality GaN thin films onto glass substrates. The deposition process was fine-tuned to optimize the GaN crystal quality. To further enhance the crystal quality of the GaN films grown on glass substrates, we introduced an AlN buffer layer which was also sputter deposited in the same chamber. For the reactive sputtering process, we utilized pure 6 N nitrogen as the working gas, and the thin-film deposition temperature was maintained at 600 °C. Comprehensive investigations were conducted on the GaN thin films to assess their chemical composition, structural properties, optoelectronic characteristics, and morphology. X-ray diffraction measurements of the GaN thin films revealed a crystalline phase of GaN (002) with a 2θ angle of approximately 34.2° and a full width at half maximum of 0.85°. Low-temperature photoluminescence spectroscopy unveiled a band-edge emission at 3.36 eV (369 nm) in the low-temperature photoluminescence spectrum. Our research findings conclusively demonstrate the suitability of radio-frequency magnetron sputtering for depositing high-quality GaN thin films on glass substrates. These GaN films exhibit significant potential for applications in several optoelectronic devices.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-024-07960-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum nitride ; Buffer layers ; Characterization and Evaluation of Materials ; Chemical composition ; Condensed Matter Physics ; Crystal growth ; Deposition ; Gallium nitrides ; Glass substrates ; Low temperature ; Machines ; Magnetron sputtering ; Manufacturing ; Nanotechnology ; Optical and Electronic Materials ; Optoelectronic devices ; Photoluminescence ; Physics ; Physics and Astronomy ; Processes ; Radio frequency ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2024-11, Vol.130 (11), Article 801</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-83c6774d9c681e8eac99a941917864ff46935ec8cacd34126a82f7f5006089693</cites><orcidid>0000-0002-2109-3256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-024-07960-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-024-07960-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Wei-Sheng</creatorcontrib><creatorcontrib>Wu, Sui-Hua</creatorcontrib><creatorcontrib>Balaji, G.</creatorcontrib><creatorcontrib>Huang, Li-Cheng</creatorcontrib><creatorcontrib>Chi, Chung-Kai</creatorcontrib><creatorcontrib>Hu, Kuo-Jui</creatorcontrib><creatorcontrib>Kuo, Hsing-Chun</creatorcontrib><title>Studies on high quality GaN/AlN deposited on glass substrates by radio-frequency reactive sputtering</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>In this study, we employed radio frequency magnetron sputtering technology with pure gallium to deposit high-quality GaN thin films onto glass substrates. The deposition process was fine-tuned to optimize the GaN crystal quality. To further enhance the crystal quality of the GaN films grown on glass substrates, we introduced an AlN buffer layer which was also sputter deposited in the same chamber. For the reactive sputtering process, we utilized pure 6 N nitrogen as the working gas, and the thin-film deposition temperature was maintained at 600 °C. Comprehensive investigations were conducted on the GaN thin films to assess their chemical composition, structural properties, optoelectronic characteristics, and morphology. X-ray diffraction measurements of the GaN thin films revealed a crystalline phase of GaN (002) with a 2θ angle of approximately 34.2° and a full width at half maximum of 0.85°. Low-temperature photoluminescence spectroscopy unveiled a band-edge emission at 3.36 eV (369 nm) in the low-temperature photoluminescence spectrum. Our research findings conclusively demonstrate the suitability of radio-frequency magnetron sputtering for depositing high-quality GaN thin films on glass substrates. These GaN films exhibit significant potential for applications in several optoelectronic devices.</description><subject>Aluminum nitride</subject><subject>Buffer layers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Condensed Matter Physics</subject><subject>Crystal growth</subject><subject>Deposition</subject><subject>Gallium nitrides</subject><subject>Glass substrates</subject><subject>Low temperature</subject><subject>Machines</subject><subject>Magnetron sputtering</subject><subject>Manufacturing</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronic devices</subject><subject>Photoluminescence</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Radio frequency</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMcPcLLEOXT9iB0fqwoKUlUOwNlyHad1FZLUdpD697gUiRt7Wa12ZnZ2ELoj8EAA5DQCMKYKoLwAqQQU7AxNCGe0AMHgHE1AcVlUTIlLdBXjDnJxSieofktj7V3EfYe3frPF-9G0Ph3wwqyms3aFazf00SdXHxGb1sSI47iOKZiUWesDDqb2fdEEtx9dZ_PsjE3-y-E4jCm54LvNDbpoTBvd7W-_Rh9Pj-_z52L5uniZz5aFpQAp27NCSl4rKyriqqyjlFGcKCIrwZuGC8VKZytrbM04ocJUtJFNCSCgUnl5je5PukPos5uY9K4fQ5dPakaILIkqhcgoekLZ0McYXKOH4D9NOGgC-pimPqWpc5r6J03NMomdSHE4fuTCn_Q_rG-EeHfZ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Liu, Wei-Sheng</creator><creator>Wu, Sui-Hua</creator><creator>Balaji, G.</creator><creator>Huang, Li-Cheng</creator><creator>Chi, Chung-Kai</creator><creator>Hu, Kuo-Jui</creator><creator>Kuo, Hsing-Chun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2109-3256</orcidid></search><sort><creationdate>20241101</creationdate><title>Studies on high quality GaN/AlN deposited on glass substrates by radio-frequency reactive sputtering</title><author>Liu, Wei-Sheng ; Wu, Sui-Hua ; Balaji, G. ; Huang, Li-Cheng ; Chi, Chung-Kai ; Hu, Kuo-Jui ; Kuo, Hsing-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-83c6774d9c681e8eac99a941917864ff46935ec8cacd34126a82f7f5006089693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum nitride</topic><topic>Buffer layers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Condensed Matter Physics</topic><topic>Crystal growth</topic><topic>Deposition</topic><topic>Gallium nitrides</topic><topic>Glass substrates</topic><topic>Low temperature</topic><topic>Machines</topic><topic>Magnetron sputtering</topic><topic>Manufacturing</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronic devices</topic><topic>Photoluminescence</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Radio frequency</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wei-Sheng</creatorcontrib><creatorcontrib>Wu, Sui-Hua</creatorcontrib><creatorcontrib>Balaji, G.</creatorcontrib><creatorcontrib>Huang, Li-Cheng</creatorcontrib><creatorcontrib>Chi, Chung-Kai</creatorcontrib><creatorcontrib>Hu, Kuo-Jui</creatorcontrib><creatorcontrib>Kuo, Hsing-Chun</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wei-Sheng</au><au>Wu, Sui-Hua</au><au>Balaji, G.</au><au>Huang, Li-Cheng</au><au>Chi, Chung-Kai</au><au>Hu, Kuo-Jui</au><au>Kuo, Hsing-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studies on high quality GaN/AlN deposited on glass substrates by radio-frequency reactive sputtering</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>130</volume><issue>11</issue><artnum>801</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In this study, we employed radio frequency magnetron sputtering technology with pure gallium to deposit high-quality GaN thin films onto glass substrates. The deposition process was fine-tuned to optimize the GaN crystal quality. To further enhance the crystal quality of the GaN films grown on glass substrates, we introduced an AlN buffer layer which was also sputter deposited in the same chamber. For the reactive sputtering process, we utilized pure 6 N nitrogen as the working gas, and the thin-film deposition temperature was maintained at 600 °C. Comprehensive investigations were conducted on the GaN thin films to assess their chemical composition, structural properties, optoelectronic characteristics, and morphology. X-ray diffraction measurements of the GaN thin films revealed a crystalline phase of GaN (002) with a 2θ angle of approximately 34.2° and a full width at half maximum of 0.85°. Low-temperature photoluminescence spectroscopy unveiled a band-edge emission at 3.36 eV (369 nm) in the low-temperature photoluminescence spectrum. Our research findings conclusively demonstrate the suitability of radio-frequency magnetron sputtering for depositing high-quality GaN thin films on glass substrates. These GaN films exhibit significant potential for applications in several optoelectronic devices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-024-07960-3</doi><orcidid>https://orcid.org/0000-0002-2109-3256</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2024-11, Vol.130 (11), Article 801
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_3117519566
source Springer Nature - Complete Springer Journals
subjects Aluminum nitride
Buffer layers
Characterization and Evaluation of Materials
Chemical composition
Condensed Matter Physics
Crystal growth
Deposition
Gallium nitrides
Glass substrates
Low temperature
Machines
Magnetron sputtering
Manufacturing
Nanotechnology
Optical and Electronic Materials
Optoelectronic devices
Photoluminescence
Physics
Physics and Astronomy
Processes
Radio frequency
Surfaces and Interfaces
Thin Films
title Studies on high quality GaN/AlN deposited on glass substrates by radio-frequency reactive sputtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A59%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studies%20on%20high%20quality%20GaN/AlN%20deposited%20on%20glass%20substrates%20by%20radio-frequency%20reactive%20sputtering&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Liu,%20Wei-Sheng&rft.date=2024-11-01&rft.volume=130&rft.issue=11&rft.artnum=801&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-024-07960-3&rft_dat=%3Cproquest_cross%3E3117519566%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117519566&rft_id=info:pmid/&rfr_iscdi=true