Internal Hole Defect Detection Based on Laser Ultrasonic Shear Wave

This study presents a method for detecting interior hole defects using atime-flight scattered-shear wave (S-wave) methodology. Additionally, a mathematical model is proposed to quantify the detected defects accurately. The proposed method, PSO-VMD, combines variational mode decomposition with a part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of nondestructive testing 2024-07, Vol.60 (7), p.709-725
Hauptverfasser: Jiang, Yi, Yu, Minglei, Wang, Rongyao, Han, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 725
container_issue 7
container_start_page 709
container_title Russian journal of nondestructive testing
container_volume 60
creator Jiang, Yi
Yu, Minglei
Wang, Rongyao
Han, Lei
description This study presents a method for detecting interior hole defects using atime-flight scattered-shear wave (S-wave) methodology. Additionally, a mathematical model is proposed to quantify the detected defects accurately. The proposed method, PSO-VMD, combines variational mode decomposition with a particle swarm optimization algorithm to extract the mode conversion signal of a defect S-wave from a complex laser ultrasonic detection signal. This method effectively enhances the S-wave mode conversion signal’s signal-to-noise ratio (SNR). An experimental system using noncontact laser ultrasonic B-scanning is constructed. The system employs fixed excitation and detection methods. Experimental verification is conducted to accurately detect and identify hole flaws inside steel samples, considering variations in burial depths and diameters. The experimental results show that the proposed techniques for detection and signal processing are capable of accurately identifying and measuring hole defects. The relative positional error, which includes both transverse distance and buried depth, is below 5%, while the relative quantitative error, specifically in terms of diameter, is below 8%.
doi_str_mv 10.1134/S1061830923600910
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3117445651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117445651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-a2e438cf3c4ae1eb53ecbc9d7ab3d9abbdaae2e93bb889f5c0d092679fdc23b33</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHPq5nMfiRHrdYWFjzU4nFJsrPasu7WZCv4701ZwYN4eg_eBzOPsUsQ1wCY3qxA5KBQaIm5EBrEEZtALlSCqLLjyKOcHPRTdhbCVgghC5QTNlt2A_nOtHzRt8TvqSE3RBgibPqO35lANY-kjMTzdTt4E_pu4_jqjYznL-aTztlJY9pAFz84Zev5w_NskZRPj8vZbZk40GpIjKQUlWvQpYaAbIbkrNN1YSzW2lhbG0OSNFqrlG4yJ-r4Tl7opnYSLeKUXY29O99_7CkM1bbfH24PFQIUaZrlGUQXjC7n-xA8NdXOb96N_6pAVIetqj9bxYwcMyF6u1fyv83_h74BG7Zq7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117445651</pqid></control><display><type>article</type><title>Internal Hole Defect Detection Based on Laser Ultrasonic Shear Wave</title><source>Springer Nature - Complete Springer Journals</source><creator>Jiang, Yi ; Yu, Minglei ; Wang, Rongyao ; Han, Lei</creator><creatorcontrib>Jiang, Yi ; Yu, Minglei ; Wang, Rongyao ; Han, Lei</creatorcontrib><description>This study presents a method for detecting interior hole defects using atime-flight scattered-shear wave (S-wave) methodology. Additionally, a mathematical model is proposed to quantify the detected defects accurately. The proposed method, PSO-VMD, combines variational mode decomposition with a particle swarm optimization algorithm to extract the mode conversion signal of a defect S-wave from a complex laser ultrasonic detection signal. This method effectively enhances the S-wave mode conversion signal’s signal-to-noise ratio (SNR). An experimental system using noncontact laser ultrasonic B-scanning is constructed. The system employs fixed excitation and detection methods. Experimental verification is conducted to accurately detect and identify hole flaws inside steel samples, considering variations in burial depths and diameters. The experimental results show that the proposed techniques for detection and signal processing are capable of accurately identifying and measuring hole defects. The relative positional error, which includes both transverse distance and buried depth, is below 5%, while the relative quantitative error, specifically in terms of diameter, is below 8%.</description><identifier>ISSN: 1061-8309</identifier><identifier>EISSN: 1608-3385</identifier><identifier>DOI: 10.1134/S1061830923600910</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acoustic Methods ; Algorithms ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Diameters ; Error analysis ; Error detection ; Flaw detection ; Hole defects ; Lasers ; Materials Science ; Particle swarm optimization ; S waves ; Signal processing ; Signal to noise ratio ; Structural Materials</subject><ispartof>Russian journal of nondestructive testing, 2024-07, Vol.60 (7), p.709-725</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1061-8309, Russian Journal of Nondestructive Testing, 2024, Vol. 60, No. 7, pp. 709–725. © Pleiades Publishing, Ltd., 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-a2e438cf3c4ae1eb53ecbc9d7ab3d9abbdaae2e93bb889f5c0d092679fdc23b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1061830923600910$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1061830923600910$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Yu, Minglei</creatorcontrib><creatorcontrib>Wang, Rongyao</creatorcontrib><creatorcontrib>Han, Lei</creatorcontrib><title>Internal Hole Defect Detection Based on Laser Ultrasonic Shear Wave</title><title>Russian journal of nondestructive testing</title><addtitle>Russ J Nondestruct Test</addtitle><description>This study presents a method for detecting interior hole defects using atime-flight scattered-shear wave (S-wave) methodology. Additionally, a mathematical model is proposed to quantify the detected defects accurately. The proposed method, PSO-VMD, combines variational mode decomposition with a particle swarm optimization algorithm to extract the mode conversion signal of a defect S-wave from a complex laser ultrasonic detection signal. This method effectively enhances the S-wave mode conversion signal’s signal-to-noise ratio (SNR). An experimental system using noncontact laser ultrasonic B-scanning is constructed. The system employs fixed excitation and detection methods. Experimental verification is conducted to accurately detect and identify hole flaws inside steel samples, considering variations in burial depths and diameters. The experimental results show that the proposed techniques for detection and signal processing are capable of accurately identifying and measuring hole defects. The relative positional error, which includes both transverse distance and buried depth, is below 5%, while the relative quantitative error, specifically in terms of diameter, is below 8%.</description><subject>Acoustic Methods</subject><subject>Algorithms</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Diameters</subject><subject>Error analysis</subject><subject>Error detection</subject><subject>Flaw detection</subject><subject>Hole defects</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Particle swarm optimization</subject><subject>S waves</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Structural Materials</subject><issn>1061-8309</issn><issn>1608-3385</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwHPq5nMfiRHrdYWFjzU4nFJsrPasu7WZCv4701ZwYN4eg_eBzOPsUsQ1wCY3qxA5KBQaIm5EBrEEZtALlSCqLLjyKOcHPRTdhbCVgghC5QTNlt2A_nOtHzRt8TvqSE3RBgibPqO35lANY-kjMTzdTt4E_pu4_jqjYznL-aTztlJY9pAFz84Zev5w_NskZRPj8vZbZk40GpIjKQUlWvQpYaAbIbkrNN1YSzW2lhbG0OSNFqrlG4yJ-r4Tl7opnYSLeKUXY29O99_7CkM1bbfH24PFQIUaZrlGUQXjC7n-xA8NdXOb96N_6pAVIetqj9bxYwcMyF6u1fyv83_h74BG7Zq7A</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Jiang, Yi</creator><creator>Yu, Minglei</creator><creator>Wang, Rongyao</creator><creator>Han, Lei</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Internal Hole Defect Detection Based on Laser Ultrasonic Shear Wave</title><author>Jiang, Yi ; Yu, Minglei ; Wang, Rongyao ; Han, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-a2e438cf3c4ae1eb53ecbc9d7ab3d9abbdaae2e93bb889f5c0d092679fdc23b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic Methods</topic><topic>Algorithms</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Diameters</topic><topic>Error analysis</topic><topic>Error detection</topic><topic>Flaw detection</topic><topic>Hole defects</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Particle swarm optimization</topic><topic>S waves</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Structural Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Yu, Minglei</creatorcontrib><creatorcontrib>Wang, Rongyao</creatorcontrib><creatorcontrib>Han, Lei</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of nondestructive testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yi</au><au>Yu, Minglei</au><au>Wang, Rongyao</au><au>Han, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal Hole Defect Detection Based on Laser Ultrasonic Shear Wave</atitle><jtitle>Russian journal of nondestructive testing</jtitle><stitle>Russ J Nondestruct Test</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>60</volume><issue>7</issue><spage>709</spage><epage>725</epage><pages>709-725</pages><issn>1061-8309</issn><eissn>1608-3385</eissn><abstract>This study presents a method for detecting interior hole defects using atime-flight scattered-shear wave (S-wave) methodology. Additionally, a mathematical model is proposed to quantify the detected defects accurately. The proposed method, PSO-VMD, combines variational mode decomposition with a particle swarm optimization algorithm to extract the mode conversion signal of a defect S-wave from a complex laser ultrasonic detection signal. This method effectively enhances the S-wave mode conversion signal’s signal-to-noise ratio (SNR). An experimental system using noncontact laser ultrasonic B-scanning is constructed. The system employs fixed excitation and detection methods. Experimental verification is conducted to accurately detect and identify hole flaws inside steel samples, considering variations in burial depths and diameters. The experimental results show that the proposed techniques for detection and signal processing are capable of accurately identifying and measuring hole defects. The relative positional error, which includes both transverse distance and buried depth, is below 5%, while the relative quantitative error, specifically in terms of diameter, is below 8%.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1061830923600910</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-8309
ispartof Russian journal of nondestructive testing, 2024-07, Vol.60 (7), p.709-725
issn 1061-8309
1608-3385
language eng
recordid cdi_proquest_journals_3117445651
source Springer Nature - Complete Springer Journals
subjects Acoustic Methods
Algorithms
Characterization and Evaluation of Materials
Chemistry and Materials Science
Diameters
Error analysis
Error detection
Flaw detection
Hole defects
Lasers
Materials Science
Particle swarm optimization
S waves
Signal processing
Signal to noise ratio
Structural Materials
title Internal Hole Defect Detection Based on Laser Ultrasonic Shear Wave
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20Hole%20Defect%20Detection%20Based%20on%20Laser%20Ultrasonic%20Shear%20Wave&rft.jtitle=Russian%20journal%20of%20nondestructive%20testing&rft.au=Jiang,%20Yi&rft.date=2024-07-01&rft.volume=60&rft.issue=7&rft.spage=709&rft.epage=725&rft.pages=709-725&rft.issn=1061-8309&rft.eissn=1608-3385&rft_id=info:doi/10.1134/S1061830923600910&rft_dat=%3Cproquest_cross%3E3117445651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117445651&rft_id=info:pmid/&rfr_iscdi=true