Internal Hole Defect Detection Based on Laser Ultrasonic Shear Wave
This study presents a method for detecting interior hole defects using atime-flight scattered-shear wave (S-wave) methodology. Additionally, a mathematical model is proposed to quantify the detected defects accurately. The proposed method, PSO-VMD, combines variational mode decomposition with a part...
Gespeichert in:
Veröffentlicht in: | Russian journal of nondestructive testing 2024-07, Vol.60 (7), p.709-725 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 725 |
---|---|
container_issue | 7 |
container_start_page | 709 |
container_title | Russian journal of nondestructive testing |
container_volume | 60 |
creator | Jiang, Yi Yu, Minglei Wang, Rongyao Han, Lei |
description | This study presents a method for detecting interior hole defects using atime-flight scattered-shear wave (S-wave) methodology. Additionally, a mathematical model is proposed to quantify the detected defects accurately. The proposed method, PSO-VMD, combines variational mode decomposition with a particle swarm optimization algorithm to extract the mode conversion signal of a defect S-wave from a complex laser ultrasonic detection signal. This method effectively enhances the S-wave mode conversion signal’s signal-to-noise ratio (SNR). An experimental system using noncontact laser ultrasonic B-scanning is constructed. The system employs fixed excitation and detection methods. Experimental verification is conducted to accurately detect and identify hole flaws inside steel samples, considering variations in burial depths and diameters. The experimental results show that the proposed techniques for detection and signal processing are capable of accurately identifying and measuring hole defects. The relative positional error, which includes both transverse distance and buried depth, is below 5%, while the relative quantitative error, specifically in terms of diameter, is below 8%. |
doi_str_mv | 10.1134/S1061830923600910 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3117445651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117445651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-a2e438cf3c4ae1eb53ecbc9d7ab3d9abbdaae2e93bb889f5c0d092679fdc23b33</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHPq5nMfiRHrdYWFjzU4nFJsrPasu7WZCv4701ZwYN4eg_eBzOPsUsQ1wCY3qxA5KBQaIm5EBrEEZtALlSCqLLjyKOcHPRTdhbCVgghC5QTNlt2A_nOtHzRt8TvqSE3RBgibPqO35lANY-kjMTzdTt4E_pu4_jqjYznL-aTztlJY9pAFz84Zev5w_NskZRPj8vZbZk40GpIjKQUlWvQpYaAbIbkrNN1YSzW2lhbG0OSNFqrlG4yJ-r4Tl7opnYSLeKUXY29O99_7CkM1bbfH24PFQIUaZrlGUQXjC7n-xA8NdXOb96N_6pAVIetqj9bxYwcMyF6u1fyv83_h74BG7Zq7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117445651</pqid></control><display><type>article</type><title>Internal Hole Defect Detection Based on Laser Ultrasonic Shear Wave</title><source>Springer Nature - Complete Springer Journals</source><creator>Jiang, Yi ; Yu, Minglei ; Wang, Rongyao ; Han, Lei</creator><creatorcontrib>Jiang, Yi ; Yu, Minglei ; Wang, Rongyao ; Han, Lei</creatorcontrib><description>This study presents a method for detecting interior hole defects using atime-flight scattered-shear wave (S-wave) methodology. Additionally, a mathematical model is proposed to quantify the detected defects accurately. The proposed method, PSO-VMD, combines variational mode decomposition with a particle swarm optimization algorithm to extract the mode conversion signal of a defect S-wave from a complex laser ultrasonic detection signal. This method effectively enhances the S-wave mode conversion signal’s signal-to-noise ratio (SNR). An experimental system using noncontact laser ultrasonic B-scanning is constructed. The system employs fixed excitation and detection methods. Experimental verification is conducted to accurately detect and identify hole flaws inside steel samples, considering variations in burial depths and diameters. The experimental results show that the proposed techniques for detection and signal processing are capable of accurately identifying and measuring hole defects. The relative positional error, which includes both transverse distance and buried depth, is below 5%, while the relative quantitative error, specifically in terms of diameter, is below 8%.</description><identifier>ISSN: 1061-8309</identifier><identifier>EISSN: 1608-3385</identifier><identifier>DOI: 10.1134/S1061830923600910</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acoustic Methods ; Algorithms ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Diameters ; Error analysis ; Error detection ; Flaw detection ; Hole defects ; Lasers ; Materials Science ; Particle swarm optimization ; S waves ; Signal processing ; Signal to noise ratio ; Structural Materials</subject><ispartof>Russian journal of nondestructive testing, 2024-07, Vol.60 (7), p.709-725</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1061-8309, Russian Journal of Nondestructive Testing, 2024, Vol. 60, No. 7, pp. 709–725. © Pleiades Publishing, Ltd., 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-a2e438cf3c4ae1eb53ecbc9d7ab3d9abbdaae2e93bb889f5c0d092679fdc23b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1061830923600910$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1061830923600910$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Yu, Minglei</creatorcontrib><creatorcontrib>Wang, Rongyao</creatorcontrib><creatorcontrib>Han, Lei</creatorcontrib><title>Internal Hole Defect Detection Based on Laser Ultrasonic Shear Wave</title><title>Russian journal of nondestructive testing</title><addtitle>Russ J Nondestruct Test</addtitle><description>This study presents a method for detecting interior hole defects using atime-flight scattered-shear wave (S-wave) methodology. Additionally, a mathematical model is proposed to quantify the detected defects accurately. The proposed method, PSO-VMD, combines variational mode decomposition with a particle swarm optimization algorithm to extract the mode conversion signal of a defect S-wave from a complex laser ultrasonic detection signal. This method effectively enhances the S-wave mode conversion signal’s signal-to-noise ratio (SNR). An experimental system using noncontact laser ultrasonic B-scanning is constructed. The system employs fixed excitation and detection methods. Experimental verification is conducted to accurately detect and identify hole flaws inside steel samples, considering variations in burial depths and diameters. The experimental results show that the proposed techniques for detection and signal processing are capable of accurately identifying and measuring hole defects. The relative positional error, which includes both transverse distance and buried depth, is below 5%, while the relative quantitative error, specifically in terms of diameter, is below 8%.</description><subject>Acoustic Methods</subject><subject>Algorithms</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Diameters</subject><subject>Error analysis</subject><subject>Error detection</subject><subject>Flaw detection</subject><subject>Hole defects</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Particle swarm optimization</subject><subject>S waves</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Structural Materials</subject><issn>1061-8309</issn><issn>1608-3385</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwHPq5nMfiRHrdYWFjzU4nFJsrPasu7WZCv4701ZwYN4eg_eBzOPsUsQ1wCY3qxA5KBQaIm5EBrEEZtALlSCqLLjyKOcHPRTdhbCVgghC5QTNlt2A_nOtHzRt8TvqSE3RBgibPqO35lANY-kjMTzdTt4E_pu4_jqjYznL-aTztlJY9pAFz84Zev5w_NskZRPj8vZbZk40GpIjKQUlWvQpYaAbIbkrNN1YSzW2lhbG0OSNFqrlG4yJ-r4Tl7opnYSLeKUXY29O99_7CkM1bbfH24PFQIUaZrlGUQXjC7n-xA8NdXOb96N_6pAVIetqj9bxYwcMyF6u1fyv83_h74BG7Zq7A</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Jiang, Yi</creator><creator>Yu, Minglei</creator><creator>Wang, Rongyao</creator><creator>Han, Lei</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Internal Hole Defect Detection Based on Laser Ultrasonic Shear Wave</title><author>Jiang, Yi ; Yu, Minglei ; Wang, Rongyao ; Han, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-a2e438cf3c4ae1eb53ecbc9d7ab3d9abbdaae2e93bb889f5c0d092679fdc23b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic Methods</topic><topic>Algorithms</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Diameters</topic><topic>Error analysis</topic><topic>Error detection</topic><topic>Flaw detection</topic><topic>Hole defects</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Particle swarm optimization</topic><topic>S waves</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Structural Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Yu, Minglei</creatorcontrib><creatorcontrib>Wang, Rongyao</creatorcontrib><creatorcontrib>Han, Lei</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of nondestructive testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yi</au><au>Yu, Minglei</au><au>Wang, Rongyao</au><au>Han, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal Hole Defect Detection Based on Laser Ultrasonic Shear Wave</atitle><jtitle>Russian journal of nondestructive testing</jtitle><stitle>Russ J Nondestruct Test</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>60</volume><issue>7</issue><spage>709</spage><epage>725</epage><pages>709-725</pages><issn>1061-8309</issn><eissn>1608-3385</eissn><abstract>This study presents a method for detecting interior hole defects using atime-flight scattered-shear wave (S-wave) methodology. Additionally, a mathematical model is proposed to quantify the detected defects accurately. The proposed method, PSO-VMD, combines variational mode decomposition with a particle swarm optimization algorithm to extract the mode conversion signal of a defect S-wave from a complex laser ultrasonic detection signal. This method effectively enhances the S-wave mode conversion signal’s signal-to-noise ratio (SNR). An experimental system using noncontact laser ultrasonic B-scanning is constructed. The system employs fixed excitation and detection methods. Experimental verification is conducted to accurately detect and identify hole flaws inside steel samples, considering variations in burial depths and diameters. The experimental results show that the proposed techniques for detection and signal processing are capable of accurately identifying and measuring hole defects. The relative positional error, which includes both transverse distance and buried depth, is below 5%, while the relative quantitative error, specifically in terms of diameter, is below 8%.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1061830923600910</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-8309 |
ispartof | Russian journal of nondestructive testing, 2024-07, Vol.60 (7), p.709-725 |
issn | 1061-8309 1608-3385 |
language | eng |
recordid | cdi_proquest_journals_3117445651 |
source | Springer Nature - Complete Springer Journals |
subjects | Acoustic Methods Algorithms Characterization and Evaluation of Materials Chemistry and Materials Science Diameters Error analysis Error detection Flaw detection Hole defects Lasers Materials Science Particle swarm optimization S waves Signal processing Signal to noise ratio Structural Materials |
title | Internal Hole Defect Detection Based on Laser Ultrasonic Shear Wave |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20Hole%20Defect%20Detection%20Based%20on%20Laser%20Ultrasonic%20Shear%20Wave&rft.jtitle=Russian%20journal%20of%20nondestructive%20testing&rft.au=Jiang,%20Yi&rft.date=2024-07-01&rft.volume=60&rft.issue=7&rft.spage=709&rft.epage=725&rft.pages=709-725&rft.issn=1061-8309&rft.eissn=1608-3385&rft_id=info:doi/10.1134/S1061830923600910&rft_dat=%3Cproquest_cross%3E3117445651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117445651&rft_id=info:pmid/&rfr_iscdi=true |