Robust Controller Design for Multivariable Systems under Nonstationary Parametric Variations and Bounded External Disturbances
This paper considers linear multivariable systems with physical parameters varying from their known nominal values in an arbitrary and nonstationary manner. The plant is subjected to polyharmonic external disturbances containing an arbitrary number of unknown frequencies with unknown amplitudes havi...
Gespeichert in:
Veröffentlicht in: | Automation and remote control 2024-06, Vol.85 (6), p.489-501 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 501 |
---|---|
container_issue | 6 |
container_start_page | 489 |
container_title | Automation and remote control |
container_volume | 85 |
creator | Chestnov, V. N. Shatov, D. V. |
description | This paper considers linear multivariable systems with physical parameters varying from their known nominal values in an arbitrary and nonstationary manner. The plant is subjected to polyharmonic external disturbances containing an arbitrary number of unknown frequencies with unknown amplitudes having a bounded sum. The problem is to design a controller that robustly stabilizes the closed loop system and ensures desired errors for the controlled variables of the plant with nominal parameters in the steady-state mode. The system equations of the original problem are represented in the (
W
, Λ,
K
)-form; for this form, the standard
H
∞
optimization problem is stated and solved. The desired accuracy of the system is achieved by analytically assigning the weight matrix of the controlled variables. The controller design method is illustrated by an example of solving a well-known benchmark problem. |
doi_str_mv | 10.1134/S0005117924060055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3117445567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117445567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-ae397f0e39779ed78389361a37281fa4b48a0b1f14a6c7c58d5d91fc6d87a6943</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmPwA7hF4lxImrZJj7CND2l8iAHXym3TqVOXjDhF7MJvp9GQOCAutmU_r2W_hJxyds65SC4WjLGUc5nHCcuGMt0jI54xFQkm4n0yCuMozA_JEeKKMc5ZLEbk69mWPXo6scY723Xa0anGdmloYx297zvffoBroew0XWzR6zXS3tQD9mANevCtNeC29AkcrLV3bUXfAh_6SMHU9MoGvqazT6-dgY5OW_S9K8FUGo_JQQMd6pOfPCav17OXyW00f7y5m1zOo4rnykegRS4bFqLMdS2VULnIOAgZK95AUiYKWMkbnkBWySpVdVrnvKmyWknI8kSMydlu78bZ916jL1a2D9dgIQZXkiRNMzlQfEdVziI63RQb166H9wrOimBz8cfmQRPvNDiwZqnd7-b_Rd8-jYDT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117445567</pqid></control><display><type>article</type><title>Robust Controller Design for Multivariable Systems under Nonstationary Parametric Variations and Bounded External Disturbances</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chestnov, V. N. ; Shatov, D. V.</creator><creatorcontrib>Chestnov, V. N. ; Shatov, D. V.</creatorcontrib><description>This paper considers linear multivariable systems with physical parameters varying from their known nominal values in an arbitrary and nonstationary manner. The plant is subjected to polyharmonic external disturbances containing an arbitrary number of unknown frequencies with unknown amplitudes having a bounded sum. The problem is to design a controller that robustly stabilizes the closed loop system and ensures desired errors for the controlled variables of the plant with nominal parameters in the steady-state mode. The system equations of the original problem are represented in the (
W
, Λ,
K
)-form; for this form, the standard
H
∞
optimization problem is stated and solved. The desired accuracy of the system is achieved by analytically assigning the weight matrix of the controlled variables. The controller design method is illustrated by an example of solving a well-known benchmark problem.</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S0005117924060055</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Closed loops ; Computer-Aided Engineering (CAD ; Control ; Control systems design ; Controllers ; Design optimization ; Design standards ; Disturbances ; Feedback control ; H-infinity control ; Mathematics ; Mathematics and Statistics ; Mechanical Engineering ; Mechatronics ; Multivariable control ; Parameter robustness ; Physical properties ; Robotics ; Robust control ; Systems Theory ; Topical Issue</subject><ispartof>Automation and remote control, 2024-06, Vol.85 (6), p.489-501</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 0005-1179, Automation and Remote Control, 2024, Vol. 85, No. 6, pp. 489–501. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2024, published in Avtomatika i Telemekhanika, 2024, No. 6, pp. 19–37.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-ae397f0e39779ed78389361a37281fa4b48a0b1f14a6c7c58d5d91fc6d87a6943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0005117924060055$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0005117924060055$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Chestnov, V. N.</creatorcontrib><creatorcontrib>Shatov, D. V.</creatorcontrib><title>Robust Controller Design for Multivariable Systems under Nonstationary Parametric Variations and Bounded External Disturbances</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>This paper considers linear multivariable systems with physical parameters varying from their known nominal values in an arbitrary and nonstationary manner. The plant is subjected to polyharmonic external disturbances containing an arbitrary number of unknown frequencies with unknown amplitudes having a bounded sum. The problem is to design a controller that robustly stabilizes the closed loop system and ensures desired errors for the controlled variables of the plant with nominal parameters in the steady-state mode. The system equations of the original problem are represented in the (
W
, Λ,
K
)-form; for this form, the standard
H
∞
optimization problem is stated and solved. The desired accuracy of the system is achieved by analytically assigning the weight matrix of the controlled variables. The controller design method is illustrated by an example of solving a well-known benchmark problem.</description><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Closed loops</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Design optimization</subject><subject>Design standards</subject><subject>Disturbances</subject><subject>Feedback control</subject><subject>H-infinity control</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Multivariable control</subject><subject>Parameter robustness</subject><subject>Physical properties</subject><subject>Robotics</subject><subject>Robust control</subject><subject>Systems Theory</subject><subject>Topical Issue</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmPwA7hF4lxImrZJj7CND2l8iAHXym3TqVOXjDhF7MJvp9GQOCAutmU_r2W_hJxyds65SC4WjLGUc5nHCcuGMt0jI54xFQkm4n0yCuMozA_JEeKKMc5ZLEbk69mWPXo6scY723Xa0anGdmloYx297zvffoBroew0XWzR6zXS3tQD9mANevCtNeC29AkcrLV3bUXfAh_6SMHU9MoGvqazT6-dgY5OW_S9K8FUGo_JQQMd6pOfPCav17OXyW00f7y5m1zOo4rnykegRS4bFqLMdS2VULnIOAgZK95AUiYKWMkbnkBWySpVdVrnvKmyWknI8kSMydlu78bZ916jL1a2D9dgIQZXkiRNMzlQfEdVziI63RQb166H9wrOimBz8cfmQRPvNDiwZqnd7-b_Rd8-jYDT</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Chestnov, V. N.</creator><creator>Shatov, D. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Robust Controller Design for Multivariable Systems under Nonstationary Parametric Variations and Bounded External Disturbances</title><author>Chestnov, V. N. ; Shatov, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-ae397f0e39779ed78389361a37281fa4b48a0b1f14a6c7c58d5d91fc6d87a6943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Closed loops</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Design optimization</topic><topic>Design standards</topic><topic>Disturbances</topic><topic>Feedback control</topic><topic>H-infinity control</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Multivariable control</topic><topic>Parameter robustness</topic><topic>Physical properties</topic><topic>Robotics</topic><topic>Robust control</topic><topic>Systems Theory</topic><topic>Topical Issue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chestnov, V. N.</creatorcontrib><creatorcontrib>Shatov, D. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chestnov, V. N.</au><au>Shatov, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Controller Design for Multivariable Systems under Nonstationary Parametric Variations and Bounded External Disturbances</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>85</volume><issue>6</issue><spage>489</spage><epage>501</epage><pages>489-501</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>This paper considers linear multivariable systems with physical parameters varying from their known nominal values in an arbitrary and nonstationary manner. The plant is subjected to polyharmonic external disturbances containing an arbitrary number of unknown frequencies with unknown amplitudes having a bounded sum. The problem is to design a controller that robustly stabilizes the closed loop system and ensures desired errors for the controlled variables of the plant with nominal parameters in the steady-state mode. The system equations of the original problem are represented in the (
W
, Λ,
K
)-form; for this form, the standard
H
∞
optimization problem is stated and solved. The desired accuracy of the system is achieved by analytically assigning the weight matrix of the controlled variables. The controller design method is illustrated by an example of solving a well-known benchmark problem.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0005117924060055</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1179 |
ispartof | Automation and remote control, 2024-06, Vol.85 (6), p.489-501 |
issn | 0005-1179 1608-3032 |
language | eng |
recordid | cdi_proquest_journals_3117445567 |
source | SpringerLink Journals - AutoHoldings |
subjects | CAE) and Design Calculus of Variations and Optimal Control Optimization Closed loops Computer-Aided Engineering (CAD Control Control systems design Controllers Design optimization Design standards Disturbances Feedback control H-infinity control Mathematics Mathematics and Statistics Mechanical Engineering Mechatronics Multivariable control Parameter robustness Physical properties Robotics Robust control Systems Theory Topical Issue |
title | Robust Controller Design for Multivariable Systems under Nonstationary Parametric Variations and Bounded External Disturbances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Controller%20Design%20for%20Multivariable%20Systems%20under%20Nonstationary%20Parametric%20Variations%20and%20Bounded%20External%20Disturbances&rft.jtitle=Automation%20and%20remote%20control&rft.au=Chestnov,%20V.%20N.&rft.date=2024-06-01&rft.volume=85&rft.issue=6&rft.spage=489&rft.epage=501&rft.pages=489-501&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S0005117924060055&rft_dat=%3Cproquest_cross%3E3117445567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117445567&rft_id=info:pmid/&rfr_iscdi=true |