Improved Nitrate‐to‐Ammonia Electrocatalysis through Hydrogen Poisoning Effects

Electrochemical conversion from nitrate to ammonia is a key step in sustainable ammonia production. However, it suffers from low productive efficiency or high energy consumption due to a lack of desired electrocatalysts. Here we report nickel cobalt phosphide (NiCoP) catalysts for nitrate‐to‐ammonia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-10, Vol.136 (44), p.n/a
Hauptverfasser: Li, Yuefei, Tan, Yuan, Zhang, Mingkai, Hu, Jun, Chen, Zhong, Su, Laisuo, Li, Jiayuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 44
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Li, Yuefei
Tan, Yuan
Zhang, Mingkai
Hu, Jun
Chen, Zhong
Su, Laisuo
Li, Jiayuan
description Electrochemical conversion from nitrate to ammonia is a key step in sustainable ammonia production. However, it suffers from low productive efficiency or high energy consumption due to a lack of desired electrocatalysts. Here we report nickel cobalt phosphide (NiCoP) catalysts for nitrate‐to‐ammonia electrocatalysis that display a record‐high catalytic current density of −702±7 mA cm−2, ammonia production rate of 5415±26 mmol gcat−1 h−1 and Faraday efficiency of 99.7±0.2 % at −0.3 V vs. RHE, affording the estimated energy consumption as low as 22.7 kWh kgammonia−1. Theoretical and experimental results reveal that these catalysts benefit from hydrogen poisoning effects, which leave behind catalytically inert adsorbed hydrogen species (HI*) at Co‐hollow sites and thereupon enable ideally reactive HII* at secondary Co−P sites. The dimerization between HI* and HII* for H2 evolution is blocked due to the catalytic inertia of HI* thereby the HII* drives nitrate hydrogenation timely. With these catalysts, the continuous ammonia production is further shown in an electrolyser with a real energy consumption of 18.9 kWh kgammonia−1. Hydrogen poisoning effects over NiCoP@CC occurring at low overpotentials can leave behind catalytically inert poisoned HI* at Co‐hollow sites and thereby create ideally reactive HII*. The dimerization between HI* and HII* for HER was suppressed due to catalytic inertia of HI* and thereby NITRR was timely initiated through HII* owing to ideal hydrogenation reactivity of HII*. As a result, a record high NH3 production rate and Faraday efficiency were achieved at low energy consumption.
doi_str_mv 10.1002/ange.202411068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3117423957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117423957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1578-4d31c966dbf1033e11f971b15f1db0f1cb855088b52d0c91e5ced58bde83622f3</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMkdiTvG148QZqyq0laqCBMxW4p80VRIXOwVl6yPwjDwJqYpgZLl3Oee7uh9Ct4AngDG5z9tSTwgmEQCO-RkaASMQ0oQl52iEcRSFnETpJbryfosxjkmSjtDzstk5-65VsK46l3f66_DZ2WFMm8a2VR5ktZadszLv8rr3lQ-6jbP7chMseuVsqdvgyVZ-QNsyyIwZYH-NLkxee33zs8fo9SF7mS3C1eN8OZuuQgks4WGkKMg0jlVhAFOqAUyaQAHMgCqwAVlwxjDnBSMKyxQ0k1oxXijNaUyIoWN0d8odPnjba9-Jrd27djgpKEASEZqyZKAmJ0o6673TRuxc1eSuF4DFsThxLE78FjcI6Un4qGrd_0OL6Xqe_bnfS6B0sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117423957</pqid></control><display><type>article</type><title>Improved Nitrate‐to‐Ammonia Electrocatalysis through Hydrogen Poisoning Effects</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Yuefei ; Tan, Yuan ; Zhang, Mingkai ; Hu, Jun ; Chen, Zhong ; Su, Laisuo ; Li, Jiayuan</creator><creatorcontrib>Li, Yuefei ; Tan, Yuan ; Zhang, Mingkai ; Hu, Jun ; Chen, Zhong ; Su, Laisuo ; Li, Jiayuan</creatorcontrib><description>Electrochemical conversion from nitrate to ammonia is a key step in sustainable ammonia production. However, it suffers from low productive efficiency or high energy consumption due to a lack of desired electrocatalysts. Here we report nickel cobalt phosphide (NiCoP) catalysts for nitrate‐to‐ammonia electrocatalysis that display a record‐high catalytic current density of −702±7 mA cm−2, ammonia production rate of 5415±26 mmol gcat−1 h−1 and Faraday efficiency of 99.7±0.2 % at −0.3 V vs. RHE, affording the estimated energy consumption as low as 22.7 kWh kgammonia−1. Theoretical and experimental results reveal that these catalysts benefit from hydrogen poisoning effects, which leave behind catalytically inert adsorbed hydrogen species (HI*) at Co‐hollow sites and thereupon enable ideally reactive HII* at secondary Co−P sites. The dimerization between HI* and HII* for H2 evolution is blocked due to the catalytic inertia of HI* thereby the HII* drives nitrate hydrogenation timely. With these catalysts, the continuous ammonia production is further shown in an electrolyser with a real energy consumption of 18.9 kWh kgammonia−1. Hydrogen poisoning effects over NiCoP@CC occurring at low overpotentials can leave behind catalytically inert poisoned HI* at Co‐hollow sites and thereby create ideally reactive HII*. The dimerization between HI* and HII* for HER was suppressed due to catalytic inertia of HI* and thereby NITRR was timely initiated through HII* owing to ideal hydrogenation reactivity of HII*. As a result, a record high NH3 production rate and Faraday efficiency were achieved at low energy consumption.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202411068</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Catalysis ; Catalysts ; Catalytic converters ; Cobalt ; Dimerization ; Electrocatalysis ; Electrocatalysts ; Electrochemistry ; Electronic structure ; Energy consumption ; Energy conversion efficiency ; Hydrogen ; Hydrogen adsorption ; Hydrogen evolution ; Nickel ; Nitrate reduction to ammonia ; Nitrates ; Phosphides ; Poisoning ; Poisoning (reaction inhibition)</subject><ispartof>Angewandte Chemie, 2024-10, Vol.136 (44), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1578-4d31c966dbf1033e11f971b15f1db0f1cb855088b52d0c91e5ced58bde83622f3</cites><orcidid>0000-0002-0781-3958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202411068$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202411068$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Yuefei</creatorcontrib><creatorcontrib>Tan, Yuan</creatorcontrib><creatorcontrib>Zhang, Mingkai</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Su, Laisuo</creatorcontrib><creatorcontrib>Li, Jiayuan</creatorcontrib><title>Improved Nitrate‐to‐Ammonia Electrocatalysis through Hydrogen Poisoning Effects</title><title>Angewandte Chemie</title><description>Electrochemical conversion from nitrate to ammonia is a key step in sustainable ammonia production. However, it suffers from low productive efficiency or high energy consumption due to a lack of desired electrocatalysts. Here we report nickel cobalt phosphide (NiCoP) catalysts for nitrate‐to‐ammonia electrocatalysis that display a record‐high catalytic current density of −702±7 mA cm−2, ammonia production rate of 5415±26 mmol gcat−1 h−1 and Faraday efficiency of 99.7±0.2 % at −0.3 V vs. RHE, affording the estimated energy consumption as low as 22.7 kWh kgammonia−1. Theoretical and experimental results reveal that these catalysts benefit from hydrogen poisoning effects, which leave behind catalytically inert adsorbed hydrogen species (HI*) at Co‐hollow sites and thereupon enable ideally reactive HII* at secondary Co−P sites. The dimerization between HI* and HII* for H2 evolution is blocked due to the catalytic inertia of HI* thereby the HII* drives nitrate hydrogenation timely. With these catalysts, the continuous ammonia production is further shown in an electrolyser with a real energy consumption of 18.9 kWh kgammonia−1. Hydrogen poisoning effects over NiCoP@CC occurring at low overpotentials can leave behind catalytically inert poisoned HI* at Co‐hollow sites and thereby create ideally reactive HII*. The dimerization between HI* and HII* for HER was suppressed due to catalytic inertia of HI* and thereby NITRR was timely initiated through HII* owing to ideal hydrogenation reactivity of HII*. As a result, a record high NH3 production rate and Faraday efficiency were achieved at low energy consumption.</description><subject>Ammonia</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Cobalt</subject><subject>Dimerization</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electronic structure</subject><subject>Energy consumption</subject><subject>Energy conversion efficiency</subject><subject>Hydrogen</subject><subject>Hydrogen adsorption</subject><subject>Hydrogen evolution</subject><subject>Nickel</subject><subject>Nitrate reduction to ammonia</subject><subject>Nitrates</subject><subject>Phosphides</subject><subject>Poisoning</subject><subject>Poisoning (reaction inhibition)</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEqWwMkdiTvG148QZqyq0laqCBMxW4p80VRIXOwVl6yPwjDwJqYpgZLl3Oee7uh9Ct4AngDG5z9tSTwgmEQCO-RkaASMQ0oQl52iEcRSFnETpJbryfosxjkmSjtDzstk5-65VsK46l3f66_DZ2WFMm8a2VR5ktZadszLv8rr3lQ-6jbP7chMseuVsqdvgyVZ-QNsyyIwZYH-NLkxee33zs8fo9SF7mS3C1eN8OZuuQgks4WGkKMg0jlVhAFOqAUyaQAHMgCqwAVlwxjDnBSMKyxQ0k1oxXijNaUyIoWN0d8odPnjba9-Jrd27djgpKEASEZqyZKAmJ0o6673TRuxc1eSuF4DFsThxLE78FjcI6Un4qGrd_0OL6Xqe_bnfS6B0sw</recordid><startdate>20241024</startdate><enddate>20241024</enddate><creator>Li, Yuefei</creator><creator>Tan, Yuan</creator><creator>Zhang, Mingkai</creator><creator>Hu, Jun</creator><creator>Chen, Zhong</creator><creator>Su, Laisuo</creator><creator>Li, Jiayuan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0781-3958</orcidid></search><sort><creationdate>20241024</creationdate><title>Improved Nitrate‐to‐Ammonia Electrocatalysis through Hydrogen Poisoning Effects</title><author>Li, Yuefei ; Tan, Yuan ; Zhang, Mingkai ; Hu, Jun ; Chen, Zhong ; Su, Laisuo ; Li, Jiayuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1578-4d31c966dbf1033e11f971b15f1db0f1cb855088b52d0c91e5ced58bde83622f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonia</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Cobalt</topic><topic>Dimerization</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electronic structure</topic><topic>Energy consumption</topic><topic>Energy conversion efficiency</topic><topic>Hydrogen</topic><topic>Hydrogen adsorption</topic><topic>Hydrogen evolution</topic><topic>Nickel</topic><topic>Nitrate reduction to ammonia</topic><topic>Nitrates</topic><topic>Phosphides</topic><topic>Poisoning</topic><topic>Poisoning (reaction inhibition)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuefei</creatorcontrib><creatorcontrib>Tan, Yuan</creatorcontrib><creatorcontrib>Zhang, Mingkai</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Su, Laisuo</creatorcontrib><creatorcontrib>Li, Jiayuan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuefei</au><au>Tan, Yuan</au><au>Zhang, Mingkai</au><au>Hu, Jun</au><au>Chen, Zhong</au><au>Su, Laisuo</au><au>Li, Jiayuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Nitrate‐to‐Ammonia Electrocatalysis through Hydrogen Poisoning Effects</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-10-24</date><risdate>2024</risdate><volume>136</volume><issue>44</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Electrochemical conversion from nitrate to ammonia is a key step in sustainable ammonia production. However, it suffers from low productive efficiency or high energy consumption due to a lack of desired electrocatalysts. Here we report nickel cobalt phosphide (NiCoP) catalysts for nitrate‐to‐ammonia electrocatalysis that display a record‐high catalytic current density of −702±7 mA cm−2, ammonia production rate of 5415±26 mmol gcat−1 h−1 and Faraday efficiency of 99.7±0.2 % at −0.3 V vs. RHE, affording the estimated energy consumption as low as 22.7 kWh kgammonia−1. Theoretical and experimental results reveal that these catalysts benefit from hydrogen poisoning effects, which leave behind catalytically inert adsorbed hydrogen species (HI*) at Co‐hollow sites and thereupon enable ideally reactive HII* at secondary Co−P sites. The dimerization between HI* and HII* for H2 evolution is blocked due to the catalytic inertia of HI* thereby the HII* drives nitrate hydrogenation timely. With these catalysts, the continuous ammonia production is further shown in an electrolyser with a real energy consumption of 18.9 kWh kgammonia−1. Hydrogen poisoning effects over NiCoP@CC occurring at low overpotentials can leave behind catalytically inert poisoned HI* at Co‐hollow sites and thereby create ideally reactive HII*. The dimerization between HI* and HII* for HER was suppressed due to catalytic inertia of HI* and thereby NITRR was timely initiated through HII* owing to ideal hydrogenation reactivity of HII*. As a result, a record high NH3 production rate and Faraday efficiency were achieved at low energy consumption.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202411068</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0781-3958</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-10, Vol.136 (44), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_3117423957
source Wiley Online Library Journals Frontfile Complete
subjects Ammonia
Catalysis
Catalysts
Catalytic converters
Cobalt
Dimerization
Electrocatalysis
Electrocatalysts
Electrochemistry
Electronic structure
Energy consumption
Energy conversion efficiency
Hydrogen
Hydrogen adsorption
Hydrogen evolution
Nickel
Nitrate reduction to ammonia
Nitrates
Phosphides
Poisoning
Poisoning (reaction inhibition)
title Improved Nitrate‐to‐Ammonia Electrocatalysis through Hydrogen Poisoning Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A20%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Nitrate%E2%80%90to%E2%80%90Ammonia%20Electrocatalysis%20through%20Hydrogen%20Poisoning%20Effects&rft.jtitle=Angewandte%20Chemie&rft.au=Li,%20Yuefei&rft.date=2024-10-24&rft.volume=136&rft.issue=44&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202411068&rft_dat=%3Cproquest_cross%3E3117423957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117423957&rft_id=info:pmid/&rfr_iscdi=true