Sterically Wrapped Oxygen‐Bridged Boron Derivatives for High‐Performance Blue Organic Light‐Emitting Diodes
Near ultraviolet (NUV) organic light‐emitting diodes (OLEDs) have great advantages in the field of light excitation sources, chemical and biological sensors, etc. However, the molecular design of NUV emitters still faces the challenges of spectral broadening and red‐shift. In this study, attaching w...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2024-09, Vol.12 (27), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 27 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 12 |
creator | Wang, Han‐Yang Xie, Feng‐Ming Li, Hao‐Ze Zhang, Kai Zhu, Yuan‐Ye Shi, Hao‐Nan Li, Yan‐Qing Tang, Jian‐Xin |
description | Near ultraviolet (NUV) organic light‐emitting diodes (OLEDs) have great advantages in the field of light excitation sources, chemical and biological sensors, etc. However, the molecular design of NUV emitters still faces the challenges of spectral broadening and red‐shift. In this study, attaching weak oxygen‐bridged triarylboron acceptor to weak carbazolyl donor is able to address intractable problems by weakening donor–acceptor (D–A) charge transfer. Simultaneously, sterically wrapped and modified oxygen‐bridged triarylboron acceptor by bulk substituents (multiple carbazolyl) can suppress intermolecular π–π stacking through steric hindrance effect. These design strategies are able to obtain short‐wavelength, narrow‐band emission, and great color purity. As a result, carbazolyl derivatives xCz‐BO‐based (x = 2, 3, 4, 5) emitters show EL emission peaks from 406 to 422 nm in the NUV light region and small full‐width at half‐maximums (FWHMs) of 32–41 nm over a wide range of dopant concentrations (10–40 wt.%). The most violet Commission International de I'Eclairage (CIE) color coordinate is (0.16, 0.03). Moreover, 5Cz‐BO can be employed as host for vacuum‐/solution‐processed blue OLEDs and these devices exhibit high performance with EQEs of over 20%.
By combining a rigid oxygen‐bridged triarylboron acceptor with a weak carbazole‐based donor to mitigate the emission red‐shift of the materials, the device based on 5Cz‐BO exhibits near‐ultraviolet emission with the peak at 416 nm, full‐width‐at‐half of 36 nm and CIE coordinate of (0.16, 0.03). |
doi_str_mv | 10.1002/adom.202400025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3117285003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117285003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2725-fbf2628ab3e759be909d9c018f03e93080070153ff43a5f75ddd430f52fd81063</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEEhV0y9oS65SxHTfxsi8oUlGQALG03NgOrvJonbSQHZ_AN_IluCoCdqxm7sy5M9INggsMAwxArqSqywEBEoFX7CjoEcxZiCHGx3_606DfNCuPeEF5FPeCzUOrnc1kUXTo2cn1WiuUvnW5rj7fP8bOqtwPxrWrKzT14E62dqcbZGqH5jZ_8dC9dl6Vsso0GhdbjVKXy8pmaOH3rQdmpW1bW-Voamulm_PgxMii0f3vehY8Xc8eJ_Nwkd7cTkaLMCMxYaFZGjIkiVxSHTO-1By44hngxADVnEICEANm1JiISmZippSKKBhGjEowDOlZcHm4u3b1ZqubVqzqrav8S0ExjknCAKinBgcqc3XTOG3E2tlSuk5gEPtkxT5Z8ZOsN_CD4dUWuvuHFqNpevfr_QKaL3_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117285003</pqid></control><display><type>article</type><title>Sterically Wrapped Oxygen‐Bridged Boron Derivatives for High‐Performance Blue Organic Light‐Emitting Diodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Han‐Yang ; Xie, Feng‐Ming ; Li, Hao‐Ze ; Zhang, Kai ; Zhu, Yuan‐Ye ; Shi, Hao‐Nan ; Li, Yan‐Qing ; Tang, Jian‐Xin</creator><creatorcontrib>Wang, Han‐Yang ; Xie, Feng‐Ming ; Li, Hao‐Ze ; Zhang, Kai ; Zhu, Yuan‐Ye ; Shi, Hao‐Nan ; Li, Yan‐Qing ; Tang, Jian‐Xin</creatorcontrib><description>Near ultraviolet (NUV) organic light‐emitting diodes (OLEDs) have great advantages in the field of light excitation sources, chemical and biological sensors, etc. However, the molecular design of NUV emitters still faces the challenges of spectral broadening and red‐shift. In this study, attaching weak oxygen‐bridged triarylboron acceptor to weak carbazolyl donor is able to address intractable problems by weakening donor–acceptor (D–A) charge transfer. Simultaneously, sterically wrapped and modified oxygen‐bridged triarylboron acceptor by bulk substituents (multiple carbazolyl) can suppress intermolecular π–π stacking through steric hindrance effect. These design strategies are able to obtain short‐wavelength, narrow‐band emission, and great color purity. As a result, carbazolyl derivatives xCz‐BO‐based (x = 2, 3, 4, 5) emitters show EL emission peaks from 406 to 422 nm in the NUV light region and small full‐width at half‐maximums (FWHMs) of 32–41 nm over a wide range of dopant concentrations (10–40 wt.%). The most violet Commission International de I'Eclairage (CIE) color coordinate is (0.16, 0.03). Moreover, 5Cz‐BO can be employed as host for vacuum‐/solution‐processed blue OLEDs and these devices exhibit high performance with EQEs of over 20%.
By combining a rigid oxygen‐bridged triarylboron acceptor with a weak carbazole‐based donor to mitigate the emission red‐shift of the materials, the device based on 5Cz‐BO exhibits near‐ultraviolet emission with the peak at 416 nm, full‐width‐at‐half of 36 nm and CIE coordinate of (0.16, 0.03).</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202400025</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Charge transfer ; Chemical sensors ; Color ; color purity ; electroluminescent devices ; Emission ; Emitters ; intramolecular charger transfer ; near ultraviolet ; Near ultraviolet radiation ; Organic light emitting diodes ; Oxygen ; oxygen‐bridged triarylboron ; Spectral emittance ; Steric hindrance</subject><ispartof>Advanced optical materials, 2024-09, Vol.12 (27), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2725-fbf2628ab3e759be909d9c018f03e93080070153ff43a5f75ddd430f52fd81063</cites><orcidid>0000-0002-6813-0448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202400025$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202400025$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Wang, Han‐Yang</creatorcontrib><creatorcontrib>Xie, Feng‐Ming</creatorcontrib><creatorcontrib>Li, Hao‐Ze</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Zhu, Yuan‐Ye</creatorcontrib><creatorcontrib>Shi, Hao‐Nan</creatorcontrib><creatorcontrib>Li, Yan‐Qing</creatorcontrib><creatorcontrib>Tang, Jian‐Xin</creatorcontrib><title>Sterically Wrapped Oxygen‐Bridged Boron Derivatives for High‐Performance Blue Organic Light‐Emitting Diodes</title><title>Advanced optical materials</title><description>Near ultraviolet (NUV) organic light‐emitting diodes (OLEDs) have great advantages in the field of light excitation sources, chemical and biological sensors, etc. However, the molecular design of NUV emitters still faces the challenges of spectral broadening and red‐shift. In this study, attaching weak oxygen‐bridged triarylboron acceptor to weak carbazolyl donor is able to address intractable problems by weakening donor–acceptor (D–A) charge transfer. Simultaneously, sterically wrapped and modified oxygen‐bridged triarylboron acceptor by bulk substituents (multiple carbazolyl) can suppress intermolecular π–π stacking through steric hindrance effect. These design strategies are able to obtain short‐wavelength, narrow‐band emission, and great color purity. As a result, carbazolyl derivatives xCz‐BO‐based (x = 2, 3, 4, 5) emitters show EL emission peaks from 406 to 422 nm in the NUV light region and small full‐width at half‐maximums (FWHMs) of 32–41 nm over a wide range of dopant concentrations (10–40 wt.%). The most violet Commission International de I'Eclairage (CIE) color coordinate is (0.16, 0.03). Moreover, 5Cz‐BO can be employed as host for vacuum‐/solution‐processed blue OLEDs and these devices exhibit high performance with EQEs of over 20%.
By combining a rigid oxygen‐bridged triarylboron acceptor with a weak carbazole‐based donor to mitigate the emission red‐shift of the materials, the device based on 5Cz‐BO exhibits near‐ultraviolet emission with the peak at 416 nm, full‐width‐at‐half of 36 nm and CIE coordinate of (0.16, 0.03).</description><subject>Charge transfer</subject><subject>Chemical sensors</subject><subject>Color</subject><subject>color purity</subject><subject>electroluminescent devices</subject><subject>Emission</subject><subject>Emitters</subject><subject>intramolecular charger transfer</subject><subject>near ultraviolet</subject><subject>Near ultraviolet radiation</subject><subject>Organic light emitting diodes</subject><subject>Oxygen</subject><subject>oxygen‐bridged triarylboron</subject><subject>Spectral emittance</subject><subject>Steric hindrance</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRSMEEhV0y9oS65SxHTfxsi8oUlGQALG03NgOrvJonbSQHZ_AN_IluCoCdqxm7sy5M9INggsMAwxArqSqywEBEoFX7CjoEcxZiCHGx3_606DfNCuPeEF5FPeCzUOrnc1kUXTo2cn1WiuUvnW5rj7fP8bOqtwPxrWrKzT14E62dqcbZGqH5jZ_8dC9dl6Vsso0GhdbjVKXy8pmaOH3rQdmpW1bW-Voamulm_PgxMii0f3vehY8Xc8eJ_Nwkd7cTkaLMCMxYaFZGjIkiVxSHTO-1By44hngxADVnEICEANm1JiISmZippSKKBhGjEowDOlZcHm4u3b1ZqubVqzqrav8S0ExjknCAKinBgcqc3XTOG3E2tlSuk5gEPtkxT5Z8ZOsN_CD4dUWuvuHFqNpevfr_QKaL3_U</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Wang, Han‐Yang</creator><creator>Xie, Feng‐Ming</creator><creator>Li, Hao‐Ze</creator><creator>Zhang, Kai</creator><creator>Zhu, Yuan‐Ye</creator><creator>Shi, Hao‐Nan</creator><creator>Li, Yan‐Qing</creator><creator>Tang, Jian‐Xin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6813-0448</orcidid></search><sort><creationdate>20240901</creationdate><title>Sterically Wrapped Oxygen‐Bridged Boron Derivatives for High‐Performance Blue Organic Light‐Emitting Diodes</title><author>Wang, Han‐Yang ; Xie, Feng‐Ming ; Li, Hao‐Ze ; Zhang, Kai ; Zhu, Yuan‐Ye ; Shi, Hao‐Nan ; Li, Yan‐Qing ; Tang, Jian‐Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2725-fbf2628ab3e759be909d9c018f03e93080070153ff43a5f75ddd430f52fd81063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge transfer</topic><topic>Chemical sensors</topic><topic>Color</topic><topic>color purity</topic><topic>electroluminescent devices</topic><topic>Emission</topic><topic>Emitters</topic><topic>intramolecular charger transfer</topic><topic>near ultraviolet</topic><topic>Near ultraviolet radiation</topic><topic>Organic light emitting diodes</topic><topic>Oxygen</topic><topic>oxygen‐bridged triarylboron</topic><topic>Spectral emittance</topic><topic>Steric hindrance</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Han‐Yang</creatorcontrib><creatorcontrib>Xie, Feng‐Ming</creatorcontrib><creatorcontrib>Li, Hao‐Ze</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Zhu, Yuan‐Ye</creatorcontrib><creatorcontrib>Shi, Hao‐Nan</creatorcontrib><creatorcontrib>Li, Yan‐Qing</creatorcontrib><creatorcontrib>Tang, Jian‐Xin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Han‐Yang</au><au>Xie, Feng‐Ming</au><au>Li, Hao‐Ze</au><au>Zhang, Kai</au><au>Zhu, Yuan‐Ye</au><au>Shi, Hao‐Nan</au><au>Li, Yan‐Qing</au><au>Tang, Jian‐Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sterically Wrapped Oxygen‐Bridged Boron Derivatives for High‐Performance Blue Organic Light‐Emitting Diodes</atitle><jtitle>Advanced optical materials</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>12</volume><issue>27</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Near ultraviolet (NUV) organic light‐emitting diodes (OLEDs) have great advantages in the field of light excitation sources, chemical and biological sensors, etc. However, the molecular design of NUV emitters still faces the challenges of spectral broadening and red‐shift. In this study, attaching weak oxygen‐bridged triarylboron acceptor to weak carbazolyl donor is able to address intractable problems by weakening donor–acceptor (D–A) charge transfer. Simultaneously, sterically wrapped and modified oxygen‐bridged triarylboron acceptor by bulk substituents (multiple carbazolyl) can suppress intermolecular π–π stacking through steric hindrance effect. These design strategies are able to obtain short‐wavelength, narrow‐band emission, and great color purity. As a result, carbazolyl derivatives xCz‐BO‐based (x = 2, 3, 4, 5) emitters show EL emission peaks from 406 to 422 nm in the NUV light region and small full‐width at half‐maximums (FWHMs) of 32–41 nm over a wide range of dopant concentrations (10–40 wt.%). The most violet Commission International de I'Eclairage (CIE) color coordinate is (0.16, 0.03). Moreover, 5Cz‐BO can be employed as host for vacuum‐/solution‐processed blue OLEDs and these devices exhibit high performance with EQEs of over 20%.
By combining a rigid oxygen‐bridged triarylboron acceptor with a weak carbazole‐based donor to mitigate the emission red‐shift of the materials, the device based on 5Cz‐BO exhibits near‐ultraviolet emission with the peak at 416 nm, full‐width‐at‐half of 36 nm and CIE coordinate of (0.16, 0.03).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202400025</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6813-0448</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2024-09, Vol.12 (27), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_3117285003 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Charge transfer Chemical sensors Color color purity electroluminescent devices Emission Emitters intramolecular charger transfer near ultraviolet Near ultraviolet radiation Organic light emitting diodes Oxygen oxygen‐bridged triarylboron Spectral emittance Steric hindrance |
title | Sterically Wrapped Oxygen‐Bridged Boron Derivatives for High‐Performance Blue Organic Light‐Emitting Diodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sterically%20Wrapped%20Oxygen%E2%80%90Bridged%20Boron%20Derivatives%20for%20High%E2%80%90Performance%20Blue%20Organic%20Light%E2%80%90Emitting%20Diodes&rft.jtitle=Advanced%20optical%20materials&rft.au=Wang,%20Han%E2%80%90Yang&rft.date=2024-09-01&rft.volume=12&rft.issue=27&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202400025&rft_dat=%3Cproquest_cross%3E3117285003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117285003&rft_id=info:pmid/&rfr_iscdi=true |