High structural stability and Li-conduction of LiNi0.8Co0.1Mn0.1O2 cathode co-coated by Al2O3 and LiNbO3 for high performance lithium-ion battery
Lithium-ion batteries (LIBs) hold promise for revolutionizing the next generation of battery systems due to the utilization of high specific capacity LiNixCoyMn1−x−yO2 (NCM) cathode materials. However, despite extensive research efforts towards further commercialization of NCM across various fields,...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-10, Vol.12 (40), p.27610-27622 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27622 |
---|---|
container_issue | 40 |
container_start_page | 27610 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 12 |
creator | Chi Nguyen Thi Linh Vu, Dong Thuc Mai, Duc Dung Minh Chien Nguyen Le, Mong Anh Pham, Duy Tho Woo Jong Yu Kim, Dukjoon |
description | Lithium-ion batteries (LIBs) hold promise for revolutionizing the next generation of battery systems due to the utilization of high specific capacity LiNixCoyMn1−x−yO2 (NCM) cathode materials. However, despite extensive research efforts towards further commercialization of NCM across various fields, challenges persist, particularly related to structural instability and side reactions with liquid electrolytes, resulting in inevitable capacity fade during cycling. In this study, we present a facile surface co-coating method for polycrystalline LiNi0.8Co0.1Mn0.1O2 (NCM811), employing stable, cost-effective Al2O3 and lithium-ion conductive LiNbO3. While Al2O3 provides a specific enhancement to create a durable coating layer, LiNbO3 is well known as the high ion-conductive coating layer. Owing to the synergistic effects of the co-coating layer with an optimal coating amount, Al2O3–LiNbO3 co-coated NCM exhibited excellent electrochemical properties. At a loading level of 3 g cm−3, it achieves a discharge capacity of 187.35 mA h g−1 at 0.2C and 76.53 mA h g−1 at 5C. Furthermore, the retention rate of Al2O3–LiNbO3 co-coated NCM reaches 92.51% at 0.5C after 100 cycles, compared to only 87.70% of the uncoated NCM. Our study demonstrates the significant improvement in the electrochemical performance of NCM facilitated by the Al2O3–LiNbO3 co-coating, surpassing single-coating strategies. |
doi_str_mv | 10.1039/d4ta04206a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3117236441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117236441</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-4e8a2efab01d222dab0d15ee2595a91cc3c0097dd47724e9336607a4c7a508e63</originalsourceid><addsrcrecordid>eNo9jU1PAjEQhhujiQS5-AuaeF6cfuxHj4SokCBc9Exm265bsmyx2z3wM_zHlkicw8yTmcn7EPLIYM5AqGcjI4LkUOANmXDIISulKm7_uaruyWwYDpCqAiiUmpCflftq6RDDqOMYsEuItetcPFPsDd24TPvepKPzPfVNWmwdzKulT873PrUdpxpj642l2qdnjNbQ-kwXHd-Ja8a2Ttj4QNuL7GRD4iP22tIkat14zC7pNcZow_mB3DXYDXZ2nVPy-frysVxlm93bernYZCfGRMykrZDbBmtghnNuEhiWW8tzlaNiWgsNoEpjZFlyaZUQRQElSl1iDpUtxJQ8_eWegv8e7RD3Bz-GPin3grGSi0JKJn4BF_dl4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117236441</pqid></control><display><type>article</type><title>High structural stability and Li-conduction of LiNi0.8Co0.1Mn0.1O2 cathode co-coated by Al2O3 and LiNbO3 for high performance lithium-ion battery</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chi Nguyen Thi Linh ; Vu, Dong Thuc ; Mai, Duc Dung ; Minh Chien Nguyen ; Le, Mong Anh ; Pham, Duy Tho ; Woo Jong Yu ; Kim, Dukjoon</creator><creatorcontrib>Chi Nguyen Thi Linh ; Vu, Dong Thuc ; Mai, Duc Dung ; Minh Chien Nguyen ; Le, Mong Anh ; Pham, Duy Tho ; Woo Jong Yu ; Kim, Dukjoon</creatorcontrib><description>Lithium-ion batteries (LIBs) hold promise for revolutionizing the next generation of battery systems due to the utilization of high specific capacity LiNixCoyMn1−x−yO2 (NCM) cathode materials. However, despite extensive research efforts towards further commercialization of NCM across various fields, challenges persist, particularly related to structural instability and side reactions with liquid electrolytes, resulting in inevitable capacity fade during cycling. In this study, we present a facile surface co-coating method for polycrystalline LiNi0.8Co0.1Mn0.1O2 (NCM811), employing stable, cost-effective Al2O3 and lithium-ion conductive LiNbO3. While Al2O3 provides a specific enhancement to create a durable coating layer, LiNbO3 is well known as the high ion-conductive coating layer. Owing to the synergistic effects of the co-coating layer with an optimal coating amount, Al2O3–LiNbO3 co-coated NCM exhibited excellent electrochemical properties. At a loading level of 3 g cm−3, it achieves a discharge capacity of 187.35 mA h g−1 at 0.2C and 76.53 mA h g−1 at 5C. Furthermore, the retention rate of Al2O3–LiNbO3 co-coated NCM reaches 92.51% at 0.5C after 100 cycles, compared to only 87.70% of the uncoated NCM. Our study demonstrates the significant improvement in the electrochemical performance of NCM facilitated by the Al2O3–LiNbO3 co-coating, surpassing single-coating strategies.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta04206a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum oxide ; Cathodes ; Coating effects ; Coatings ; Commercialization ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrolytes ; Lithium ; Lithium niobates ; Lithium-ion batteries ; Side reactions ; Specific capacity ; Structural stability ; Synergistic effect</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-10, Vol.12 (40), p.27610-27622</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chi Nguyen Thi Linh</creatorcontrib><creatorcontrib>Vu, Dong Thuc</creatorcontrib><creatorcontrib>Mai, Duc Dung</creatorcontrib><creatorcontrib>Minh Chien Nguyen</creatorcontrib><creatorcontrib>Le, Mong Anh</creatorcontrib><creatorcontrib>Pham, Duy Tho</creatorcontrib><creatorcontrib>Woo Jong Yu</creatorcontrib><creatorcontrib>Kim, Dukjoon</creatorcontrib><title>High structural stability and Li-conduction of LiNi0.8Co0.1Mn0.1O2 cathode co-coated by Al2O3 and LiNbO3 for high performance lithium-ion battery</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Lithium-ion batteries (LIBs) hold promise for revolutionizing the next generation of battery systems due to the utilization of high specific capacity LiNixCoyMn1−x−yO2 (NCM) cathode materials. However, despite extensive research efforts towards further commercialization of NCM across various fields, challenges persist, particularly related to structural instability and side reactions with liquid electrolytes, resulting in inevitable capacity fade during cycling. In this study, we present a facile surface co-coating method for polycrystalline LiNi0.8Co0.1Mn0.1O2 (NCM811), employing stable, cost-effective Al2O3 and lithium-ion conductive LiNbO3. While Al2O3 provides a specific enhancement to create a durable coating layer, LiNbO3 is well known as the high ion-conductive coating layer. Owing to the synergistic effects of the co-coating layer with an optimal coating amount, Al2O3–LiNbO3 co-coated NCM exhibited excellent electrochemical properties. At a loading level of 3 g cm−3, it achieves a discharge capacity of 187.35 mA h g−1 at 0.2C and 76.53 mA h g−1 at 5C. Furthermore, the retention rate of Al2O3–LiNbO3 co-coated NCM reaches 92.51% at 0.5C after 100 cycles, compared to only 87.70% of the uncoated NCM. Our study demonstrates the significant improvement in the electrochemical performance of NCM facilitated by the Al2O3–LiNbO3 co-coating, surpassing single-coating strategies.</description><subject>Aluminum oxide</subject><subject>Cathodes</subject><subject>Coating effects</subject><subject>Coatings</subject><subject>Commercialization</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Lithium</subject><subject>Lithium niobates</subject><subject>Lithium-ion batteries</subject><subject>Side reactions</subject><subject>Specific capacity</subject><subject>Structural stability</subject><subject>Synergistic effect</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9jU1PAjEQhhujiQS5-AuaeF6cfuxHj4SokCBc9Exm265bsmyx2z3wM_zHlkicw8yTmcn7EPLIYM5AqGcjI4LkUOANmXDIISulKm7_uaruyWwYDpCqAiiUmpCflftq6RDDqOMYsEuItetcPFPsDd24TPvepKPzPfVNWmwdzKulT873PrUdpxpj642l2qdnjNbQ-kwXHd-Ja8a2Ttj4QNuL7GRD4iP22tIkat14zC7pNcZow_mB3DXYDXZ2nVPy-frysVxlm93bernYZCfGRMykrZDbBmtghnNuEhiWW8tzlaNiWgsNoEpjZFlyaZUQRQElSl1iDpUtxJQ8_eWegv8e7RD3Bz-GPin3grGSi0JKJn4BF_dl4w</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Chi Nguyen Thi Linh</creator><creator>Vu, Dong Thuc</creator><creator>Mai, Duc Dung</creator><creator>Minh Chien Nguyen</creator><creator>Le, Mong Anh</creator><creator>Pham, Duy Tho</creator><creator>Woo Jong Yu</creator><creator>Kim, Dukjoon</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20241015</creationdate><title>High structural stability and Li-conduction of LiNi0.8Co0.1Mn0.1O2 cathode co-coated by Al2O3 and LiNbO3 for high performance lithium-ion battery</title><author>Chi Nguyen Thi Linh ; Vu, Dong Thuc ; Mai, Duc Dung ; Minh Chien Nguyen ; Le, Mong Anh ; Pham, Duy Tho ; Woo Jong Yu ; Kim, Dukjoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-4e8a2efab01d222dab0d15ee2595a91cc3c0097dd47724e9336607a4c7a508e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum oxide</topic><topic>Cathodes</topic><topic>Coating effects</topic><topic>Coatings</topic><topic>Commercialization</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Lithium</topic><topic>Lithium niobates</topic><topic>Lithium-ion batteries</topic><topic>Side reactions</topic><topic>Specific capacity</topic><topic>Structural stability</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi Nguyen Thi Linh</creatorcontrib><creatorcontrib>Vu, Dong Thuc</creatorcontrib><creatorcontrib>Mai, Duc Dung</creatorcontrib><creatorcontrib>Minh Chien Nguyen</creatorcontrib><creatorcontrib>Le, Mong Anh</creatorcontrib><creatorcontrib>Pham, Duy Tho</creatorcontrib><creatorcontrib>Woo Jong Yu</creatorcontrib><creatorcontrib>Kim, Dukjoon</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi Nguyen Thi Linh</au><au>Vu, Dong Thuc</au><au>Mai, Duc Dung</au><au>Minh Chien Nguyen</au><au>Le, Mong Anh</au><au>Pham, Duy Tho</au><au>Woo Jong Yu</au><au>Kim, Dukjoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High structural stability and Li-conduction of LiNi0.8Co0.1Mn0.1O2 cathode co-coated by Al2O3 and LiNbO3 for high performance lithium-ion battery</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-10-15</date><risdate>2024</risdate><volume>12</volume><issue>40</issue><spage>27610</spage><epage>27622</epage><pages>27610-27622</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Lithium-ion batteries (LIBs) hold promise for revolutionizing the next generation of battery systems due to the utilization of high specific capacity LiNixCoyMn1−x−yO2 (NCM) cathode materials. However, despite extensive research efforts towards further commercialization of NCM across various fields, challenges persist, particularly related to structural instability and side reactions with liquid electrolytes, resulting in inevitable capacity fade during cycling. In this study, we present a facile surface co-coating method for polycrystalline LiNi0.8Co0.1Mn0.1O2 (NCM811), employing stable, cost-effective Al2O3 and lithium-ion conductive LiNbO3. While Al2O3 provides a specific enhancement to create a durable coating layer, LiNbO3 is well known as the high ion-conductive coating layer. Owing to the synergistic effects of the co-coating layer with an optimal coating amount, Al2O3–LiNbO3 co-coated NCM exhibited excellent electrochemical properties. At a loading level of 3 g cm−3, it achieves a discharge capacity of 187.35 mA h g−1 at 0.2C and 76.53 mA h g−1 at 5C. Furthermore, the retention rate of Al2O3–LiNbO3 co-coated NCM reaches 92.51% at 0.5C after 100 cycles, compared to only 87.70% of the uncoated NCM. Our study demonstrates the significant improvement in the electrochemical performance of NCM facilitated by the Al2O3–LiNbO3 co-coating, surpassing single-coating strategies.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta04206a</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2024-10, Vol.12 (40), p.27610-27622 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_3117236441 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Aluminum oxide Cathodes Coating effects Coatings Commercialization Electrochemical analysis Electrochemistry Electrode materials Electrolytes Lithium Lithium niobates Lithium-ion batteries Side reactions Specific capacity Structural stability Synergistic effect |
title | High structural stability and Li-conduction of LiNi0.8Co0.1Mn0.1O2 cathode co-coated by Al2O3 and LiNbO3 for high performance lithium-ion battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20structural%20stability%20and%20Li-conduction%20of%20LiNi0.8Co0.1Mn0.1O2%20cathode%20co-coated%20by%20Al2O3%20and%20LiNbO3%20for%20high%20performance%20lithium-ion%20battery&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Chi%20Nguyen%20Thi%20Linh&rft.date=2024-10-15&rft.volume=12&rft.issue=40&rft.spage=27610&rft.epage=27622&rft.pages=27610-27622&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta04206a&rft_dat=%3Cproquest%3E3117236441%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117236441&rft_id=info:pmid/&rfr_iscdi=true |