High structural stability and Li-conduction of LiNi0.8Co0.1Mn0.1O2 cathode co-coated by Al2O3 and LiNbO3 for high performance lithium-ion battery

Lithium-ion batteries (LIBs) hold promise for revolutionizing the next generation of battery systems due to the utilization of high specific capacity LiNixCoyMn1−x−yO2 (NCM) cathode materials. However, despite extensive research efforts towards further commercialization of NCM across various fields,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-10, Vol.12 (40), p.27610-27622
Hauptverfasser: Chi Nguyen Thi Linh, Vu, Dong Thuc, Mai, Duc Dung, Minh Chien Nguyen, Le, Mong Anh, Pham, Duy Tho, Woo Jong Yu, Kim, Dukjoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27622
container_issue 40
container_start_page 27610
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Chi Nguyen Thi Linh
Vu, Dong Thuc
Mai, Duc Dung
Minh Chien Nguyen
Le, Mong Anh
Pham, Duy Tho
Woo Jong Yu
Kim, Dukjoon
description Lithium-ion batteries (LIBs) hold promise for revolutionizing the next generation of battery systems due to the utilization of high specific capacity LiNixCoyMn1−x−yO2 (NCM) cathode materials. However, despite extensive research efforts towards further commercialization of NCM across various fields, challenges persist, particularly related to structural instability and side reactions with liquid electrolytes, resulting in inevitable capacity fade during cycling. In this study, we present a facile surface co-coating method for polycrystalline LiNi0.8Co0.1Mn0.1O2 (NCM811), employing stable, cost-effective Al2O3 and lithium-ion conductive LiNbO3. While Al2O3 provides a specific enhancement to create a durable coating layer, LiNbO3 is well known as the high ion-conductive coating layer. Owing to the synergistic effects of the co-coating layer with an optimal coating amount, Al2O3–LiNbO3 co-coated NCM exhibited excellent electrochemical properties. At a loading level of 3 g cm−3, it achieves a discharge capacity of 187.35 mA h g−1 at 0.2C and 76.53 mA h g−1 at 5C. Furthermore, the retention rate of Al2O3–LiNbO3 co-coated NCM reaches 92.51% at 0.5C after 100 cycles, compared to only 87.70% of the uncoated NCM. Our study demonstrates the significant improvement in the electrochemical performance of NCM facilitated by the Al2O3–LiNbO3 co-coating, surpassing single-coating strategies.
doi_str_mv 10.1039/d4ta04206a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3117236441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117236441</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-4e8a2efab01d222dab0d15ee2595a91cc3c0097dd47724e9336607a4c7a508e63</originalsourceid><addsrcrecordid>eNo9jU1PAjEQhhujiQS5-AuaeF6cfuxHj4SokCBc9Exm265bsmyx2z3wM_zHlkicw8yTmcn7EPLIYM5AqGcjI4LkUOANmXDIISulKm7_uaruyWwYDpCqAiiUmpCflftq6RDDqOMYsEuItetcPFPsDd24TPvepKPzPfVNWmwdzKulT873PrUdpxpj642l2qdnjNbQ-kwXHd-Ja8a2Ttj4QNuL7GRD4iP22tIkat14zC7pNcZow_mB3DXYDXZ2nVPy-frysVxlm93bernYZCfGRMykrZDbBmtghnNuEhiWW8tzlaNiWgsNoEpjZFlyaZUQRQElSl1iDpUtxJQ8_eWegv8e7RD3Bz-GPin3grGSi0JKJn4BF_dl4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117236441</pqid></control><display><type>article</type><title>High structural stability and Li-conduction of LiNi0.8Co0.1Mn0.1O2 cathode co-coated by Al2O3 and LiNbO3 for high performance lithium-ion battery</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chi Nguyen Thi Linh ; Vu, Dong Thuc ; Mai, Duc Dung ; Minh Chien Nguyen ; Le, Mong Anh ; Pham, Duy Tho ; Woo Jong Yu ; Kim, Dukjoon</creator><creatorcontrib>Chi Nguyen Thi Linh ; Vu, Dong Thuc ; Mai, Duc Dung ; Minh Chien Nguyen ; Le, Mong Anh ; Pham, Duy Tho ; Woo Jong Yu ; Kim, Dukjoon</creatorcontrib><description>Lithium-ion batteries (LIBs) hold promise for revolutionizing the next generation of battery systems due to the utilization of high specific capacity LiNixCoyMn1−x−yO2 (NCM) cathode materials. However, despite extensive research efforts towards further commercialization of NCM across various fields, challenges persist, particularly related to structural instability and side reactions with liquid electrolytes, resulting in inevitable capacity fade during cycling. In this study, we present a facile surface co-coating method for polycrystalline LiNi0.8Co0.1Mn0.1O2 (NCM811), employing stable, cost-effective Al2O3 and lithium-ion conductive LiNbO3. While Al2O3 provides a specific enhancement to create a durable coating layer, LiNbO3 is well known as the high ion-conductive coating layer. Owing to the synergistic effects of the co-coating layer with an optimal coating amount, Al2O3–LiNbO3 co-coated NCM exhibited excellent electrochemical properties. At a loading level of 3 g cm−3, it achieves a discharge capacity of 187.35 mA h g−1 at 0.2C and 76.53 mA h g−1 at 5C. Furthermore, the retention rate of Al2O3–LiNbO3 co-coated NCM reaches 92.51% at 0.5C after 100 cycles, compared to only 87.70% of the uncoated NCM. Our study demonstrates the significant improvement in the electrochemical performance of NCM facilitated by the Al2O3–LiNbO3 co-coating, surpassing single-coating strategies.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta04206a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum oxide ; Cathodes ; Coating effects ; Coatings ; Commercialization ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrolytes ; Lithium ; Lithium niobates ; Lithium-ion batteries ; Side reactions ; Specific capacity ; Structural stability ; Synergistic effect</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-10, Vol.12 (40), p.27610-27622</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chi Nguyen Thi Linh</creatorcontrib><creatorcontrib>Vu, Dong Thuc</creatorcontrib><creatorcontrib>Mai, Duc Dung</creatorcontrib><creatorcontrib>Minh Chien Nguyen</creatorcontrib><creatorcontrib>Le, Mong Anh</creatorcontrib><creatorcontrib>Pham, Duy Tho</creatorcontrib><creatorcontrib>Woo Jong Yu</creatorcontrib><creatorcontrib>Kim, Dukjoon</creatorcontrib><title>High structural stability and Li-conduction of LiNi0.8Co0.1Mn0.1O2 cathode co-coated by Al2O3 and LiNbO3 for high performance lithium-ion battery</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Lithium-ion batteries (LIBs) hold promise for revolutionizing the next generation of battery systems due to the utilization of high specific capacity LiNixCoyMn1−x−yO2 (NCM) cathode materials. However, despite extensive research efforts towards further commercialization of NCM across various fields, challenges persist, particularly related to structural instability and side reactions with liquid electrolytes, resulting in inevitable capacity fade during cycling. In this study, we present a facile surface co-coating method for polycrystalline LiNi0.8Co0.1Mn0.1O2 (NCM811), employing stable, cost-effective Al2O3 and lithium-ion conductive LiNbO3. While Al2O3 provides a specific enhancement to create a durable coating layer, LiNbO3 is well known as the high ion-conductive coating layer. Owing to the synergistic effects of the co-coating layer with an optimal coating amount, Al2O3–LiNbO3 co-coated NCM exhibited excellent electrochemical properties. At a loading level of 3 g cm−3, it achieves a discharge capacity of 187.35 mA h g−1 at 0.2C and 76.53 mA h g−1 at 5C. Furthermore, the retention rate of Al2O3–LiNbO3 co-coated NCM reaches 92.51% at 0.5C after 100 cycles, compared to only 87.70% of the uncoated NCM. Our study demonstrates the significant improvement in the electrochemical performance of NCM facilitated by the Al2O3–LiNbO3 co-coating, surpassing single-coating strategies.</description><subject>Aluminum oxide</subject><subject>Cathodes</subject><subject>Coating effects</subject><subject>Coatings</subject><subject>Commercialization</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Lithium</subject><subject>Lithium niobates</subject><subject>Lithium-ion batteries</subject><subject>Side reactions</subject><subject>Specific capacity</subject><subject>Structural stability</subject><subject>Synergistic effect</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9jU1PAjEQhhujiQS5-AuaeF6cfuxHj4SokCBc9Exm265bsmyx2z3wM_zHlkicw8yTmcn7EPLIYM5AqGcjI4LkUOANmXDIISulKm7_uaruyWwYDpCqAiiUmpCflftq6RDDqOMYsEuItetcPFPsDd24TPvepKPzPfVNWmwdzKulT873PrUdpxpj642l2qdnjNbQ-kwXHd-Ja8a2Ttj4QNuL7GRD4iP22tIkat14zC7pNcZow_mB3DXYDXZ2nVPy-frysVxlm93bernYZCfGRMykrZDbBmtghnNuEhiWW8tzlaNiWgsNoEpjZFlyaZUQRQElSl1iDpUtxJQ8_eWegv8e7RD3Bz-GPin3grGSi0JKJn4BF_dl4w</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Chi Nguyen Thi Linh</creator><creator>Vu, Dong Thuc</creator><creator>Mai, Duc Dung</creator><creator>Minh Chien Nguyen</creator><creator>Le, Mong Anh</creator><creator>Pham, Duy Tho</creator><creator>Woo Jong Yu</creator><creator>Kim, Dukjoon</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20241015</creationdate><title>High structural stability and Li-conduction of LiNi0.8Co0.1Mn0.1O2 cathode co-coated by Al2O3 and LiNbO3 for high performance lithium-ion battery</title><author>Chi Nguyen Thi Linh ; Vu, Dong Thuc ; Mai, Duc Dung ; Minh Chien Nguyen ; Le, Mong Anh ; Pham, Duy Tho ; Woo Jong Yu ; Kim, Dukjoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-4e8a2efab01d222dab0d15ee2595a91cc3c0097dd47724e9336607a4c7a508e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum oxide</topic><topic>Cathodes</topic><topic>Coating effects</topic><topic>Coatings</topic><topic>Commercialization</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Lithium</topic><topic>Lithium niobates</topic><topic>Lithium-ion batteries</topic><topic>Side reactions</topic><topic>Specific capacity</topic><topic>Structural stability</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi Nguyen Thi Linh</creatorcontrib><creatorcontrib>Vu, Dong Thuc</creatorcontrib><creatorcontrib>Mai, Duc Dung</creatorcontrib><creatorcontrib>Minh Chien Nguyen</creatorcontrib><creatorcontrib>Le, Mong Anh</creatorcontrib><creatorcontrib>Pham, Duy Tho</creatorcontrib><creatorcontrib>Woo Jong Yu</creatorcontrib><creatorcontrib>Kim, Dukjoon</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi Nguyen Thi Linh</au><au>Vu, Dong Thuc</au><au>Mai, Duc Dung</au><au>Minh Chien Nguyen</au><au>Le, Mong Anh</au><au>Pham, Duy Tho</au><au>Woo Jong Yu</au><au>Kim, Dukjoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High structural stability and Li-conduction of LiNi0.8Co0.1Mn0.1O2 cathode co-coated by Al2O3 and LiNbO3 for high performance lithium-ion battery</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-10-15</date><risdate>2024</risdate><volume>12</volume><issue>40</issue><spage>27610</spage><epage>27622</epage><pages>27610-27622</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Lithium-ion batteries (LIBs) hold promise for revolutionizing the next generation of battery systems due to the utilization of high specific capacity LiNixCoyMn1−x−yO2 (NCM) cathode materials. However, despite extensive research efforts towards further commercialization of NCM across various fields, challenges persist, particularly related to structural instability and side reactions with liquid electrolytes, resulting in inevitable capacity fade during cycling. In this study, we present a facile surface co-coating method for polycrystalline LiNi0.8Co0.1Mn0.1O2 (NCM811), employing stable, cost-effective Al2O3 and lithium-ion conductive LiNbO3. While Al2O3 provides a specific enhancement to create a durable coating layer, LiNbO3 is well known as the high ion-conductive coating layer. Owing to the synergistic effects of the co-coating layer with an optimal coating amount, Al2O3–LiNbO3 co-coated NCM exhibited excellent electrochemical properties. At a loading level of 3 g cm−3, it achieves a discharge capacity of 187.35 mA h g−1 at 0.2C and 76.53 mA h g−1 at 5C. Furthermore, the retention rate of Al2O3–LiNbO3 co-coated NCM reaches 92.51% at 0.5C after 100 cycles, compared to only 87.70% of the uncoated NCM. Our study demonstrates the significant improvement in the electrochemical performance of NCM facilitated by the Al2O3–LiNbO3 co-coating, surpassing single-coating strategies.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta04206a</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-10, Vol.12 (40), p.27610-27622
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3117236441
source Royal Society Of Chemistry Journals 2008-
subjects Aluminum oxide
Cathodes
Coating effects
Coatings
Commercialization
Electrochemical analysis
Electrochemistry
Electrode materials
Electrolytes
Lithium
Lithium niobates
Lithium-ion batteries
Side reactions
Specific capacity
Structural stability
Synergistic effect
title High structural stability and Li-conduction of LiNi0.8Co0.1Mn0.1O2 cathode co-coated by Al2O3 and LiNbO3 for high performance lithium-ion battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20structural%20stability%20and%20Li-conduction%20of%20LiNi0.8Co0.1Mn0.1O2%20cathode%20co-coated%20by%20Al2O3%20and%20LiNbO3%20for%20high%20performance%20lithium-ion%20battery&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Chi%20Nguyen%20Thi%20Linh&rft.date=2024-10-15&rft.volume=12&rft.issue=40&rft.spage=27610&rft.epage=27622&rft.pages=27610-27622&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta04206a&rft_dat=%3Cproquest%3E3117236441%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117236441&rft_id=info:pmid/&rfr_iscdi=true