Physics-informed machine learning for modeling multidimensional dynamics

This study presents a hybrid modeling approach that integrates physics and machine learning for modeling multi-dimensional dynamics of a coupled nonlinear dynamical system. This approach leverages principles from classical mechanics, such as the Euler-Lagrange and Hamiltonian formalisms, to facilita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2024-12, Vol.112 (24), p.21565-21585
Hauptverfasser: Abbasi, Amirhassan, Kambali, Prashant N., Shahidi, Parham, Nataraj, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21585
container_issue 24
container_start_page 21565
container_title Nonlinear dynamics
container_volume 112
creator Abbasi, Amirhassan
Kambali, Prashant N.
Shahidi, Parham
Nataraj, C.
description This study presents a hybrid modeling approach that integrates physics and machine learning for modeling multi-dimensional dynamics of a coupled nonlinear dynamical system. This approach leverages principles from classical mechanics, such as the Euler-Lagrange and Hamiltonian formalisms, to facilitate the process of learning from data. The hybrid model incorporates single or multiple artificial neural networks within a customized computational graph designed based on the physics of the problem. The customization minimizes the potential of violating the underlying physics and maximizes the efficiency of information flow within the model. The capabilities of this approach are investigated for various multidimensional modeling scenarios using different configurations of a coupled nonlinear dynamical system. It is demonstrated that, in addition to improving modeling criteria such as accuracy and consistency with physics, this approach provides additional modeling benefits. The hybrid model implements a physics-based architecture, enabling the direct alteration of both conservative and non-conservative components of the dynamics. This allows for an expansion in the model’s input dimensionality and optimal allocation of input variable effects on conservative or non-conservative components of dynamics.
doi_str_mv 10.1007/s11071-024-10163-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3117175660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117175660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-5c7cf9d6f5ead0f8639f6a345dc47fb7310cb705a9dbbdc48a8be25637bf3c373</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hk0yS7RylqhYIeFHoL2fxpUzbZmrSHfntTV_DmaZg37z2GH0K3BO4JgHjIhIAgGOoZJkA4xfQMTQgTFNe8XZ2jCbTlBC2sLtFVzlsAoDU0E7R43xyz1xn76IYUrKmC0hsfbdVblaKP66roVRiM7U9LOPR7b3ywMfshqr4yx6hCKbhGF0712d78zin6fH76mC_w8u3ldf64xLoG2GOmhXat4Y5ZZcA1nLaOKzpjRs-E6wQloDsBTLWm64rWqKazNeNUdI5qKugU3Y29uzR8HWzey-1wSOWTLCkhggjGORRXPbp0GnJO1sld8kGloyQgT8TkSEwWYvKHmKQlRMdQLua4tumv-p_UN9Bgb-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117175660</pqid></control><display><type>article</type><title>Physics-informed machine learning for modeling multidimensional dynamics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Abbasi, Amirhassan ; Kambali, Prashant N. ; Shahidi, Parham ; Nataraj, C.</creator><creatorcontrib>Abbasi, Amirhassan ; Kambali, Prashant N. ; Shahidi, Parham ; Nataraj, C.</creatorcontrib><description>This study presents a hybrid modeling approach that integrates physics and machine learning for modeling multi-dimensional dynamics of a coupled nonlinear dynamical system. This approach leverages principles from classical mechanics, such as the Euler-Lagrange and Hamiltonian formalisms, to facilitate the process of learning from data. The hybrid model incorporates single or multiple artificial neural networks within a customized computational graph designed based on the physics of the problem. The customization minimizes the potential of violating the underlying physics and maximizes the efficiency of information flow within the model. The capabilities of this approach are investigated for various multidimensional modeling scenarios using different configurations of a coupled nonlinear dynamical system. It is demonstrated that, in addition to improving modeling criteria such as accuracy and consistency with physics, this approach provides additional modeling benefits. The hybrid model implements a physics-based architecture, enabling the direct alteration of both conservative and non-conservative components of the dynamics. This allows for an expansion in the model’s input dimensionality and optimal allocation of input variable effects on conservative or non-conservative components of dynamics.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-10163-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial neural networks ; Automotive Engineering ; Classical Mechanics ; Control ; Customization ; Dynamical Systems ; Engineering ; Hamiltonian functions ; Information flow ; Machine learning ; Mechanical Engineering ; Nonlinear dynamics ; Original Paper ; Physics ; Vibration</subject><ispartof>Nonlinear dynamics, 2024-12, Vol.112 (24), p.21565-21585</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-5c7cf9d6f5ead0f8639f6a345dc47fb7310cb705a9dbbdc48a8be25637bf3c373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-024-10163-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-024-10163-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Abbasi, Amirhassan</creatorcontrib><creatorcontrib>Kambali, Prashant N.</creatorcontrib><creatorcontrib>Shahidi, Parham</creatorcontrib><creatorcontrib>Nataraj, C.</creatorcontrib><title>Physics-informed machine learning for modeling multidimensional dynamics</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This study presents a hybrid modeling approach that integrates physics and machine learning for modeling multi-dimensional dynamics of a coupled nonlinear dynamical system. This approach leverages principles from classical mechanics, such as the Euler-Lagrange and Hamiltonian formalisms, to facilitate the process of learning from data. The hybrid model incorporates single or multiple artificial neural networks within a customized computational graph designed based on the physics of the problem. The customization minimizes the potential of violating the underlying physics and maximizes the efficiency of information flow within the model. The capabilities of this approach are investigated for various multidimensional modeling scenarios using different configurations of a coupled nonlinear dynamical system. It is demonstrated that, in addition to improving modeling criteria such as accuracy and consistency with physics, this approach provides additional modeling benefits. The hybrid model implements a physics-based architecture, enabling the direct alteration of both conservative and non-conservative components of the dynamics. This allows for an expansion in the model’s input dimensionality and optimal allocation of input variable effects on conservative or non-conservative components of dynamics.</description><subject>Artificial neural networks</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Customization</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Hamiltonian functions</subject><subject>Information flow</subject><subject>Machine learning</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hk0yS7RylqhYIeFHoL2fxpUzbZmrSHfntTV_DmaZg37z2GH0K3BO4JgHjIhIAgGOoZJkA4xfQMTQgTFNe8XZ2jCbTlBC2sLtFVzlsAoDU0E7R43xyz1xn76IYUrKmC0hsfbdVblaKP66roVRiM7U9LOPR7b3ywMfshqr4yx6hCKbhGF0712d78zin6fH76mC_w8u3ldf64xLoG2GOmhXat4Y5ZZcA1nLaOKzpjRs-E6wQloDsBTLWm64rWqKazNeNUdI5qKugU3Y29uzR8HWzey-1wSOWTLCkhggjGORRXPbp0GnJO1sld8kGloyQgT8TkSEwWYvKHmKQlRMdQLua4tumv-p_UN9Bgb-E</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Abbasi, Amirhassan</creator><creator>Kambali, Prashant N.</creator><creator>Shahidi, Parham</creator><creator>Nataraj, C.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Physics-informed machine learning for modeling multidimensional dynamics</title><author>Abbasi, Amirhassan ; Kambali, Prashant N. ; Shahidi, Parham ; Nataraj, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-5c7cf9d6f5ead0f8639f6a345dc47fb7310cb705a9dbbdc48a8be25637bf3c373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Customization</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Hamiltonian functions</topic><topic>Information flow</topic><topic>Machine learning</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbasi, Amirhassan</creatorcontrib><creatorcontrib>Kambali, Prashant N.</creatorcontrib><creatorcontrib>Shahidi, Parham</creatorcontrib><creatorcontrib>Nataraj, C.</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbasi, Amirhassan</au><au>Kambali, Prashant N.</au><au>Shahidi, Parham</au><au>Nataraj, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-informed machine learning for modeling multidimensional dynamics</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>112</volume><issue>24</issue><spage>21565</spage><epage>21585</epage><pages>21565-21585</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This study presents a hybrid modeling approach that integrates physics and machine learning for modeling multi-dimensional dynamics of a coupled nonlinear dynamical system. This approach leverages principles from classical mechanics, such as the Euler-Lagrange and Hamiltonian formalisms, to facilitate the process of learning from data. The hybrid model incorporates single or multiple artificial neural networks within a customized computational graph designed based on the physics of the problem. The customization minimizes the potential of violating the underlying physics and maximizes the efficiency of information flow within the model. The capabilities of this approach are investigated for various multidimensional modeling scenarios using different configurations of a coupled nonlinear dynamical system. It is demonstrated that, in addition to improving modeling criteria such as accuracy and consistency with physics, this approach provides additional modeling benefits. The hybrid model implements a physics-based architecture, enabling the direct alteration of both conservative and non-conservative components of the dynamics. This allows for an expansion in the model’s input dimensionality and optimal allocation of input variable effects on conservative or non-conservative components of dynamics.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-10163-3</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2024-12, Vol.112 (24), p.21565-21585
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_3117175660
source SpringerLink Journals - AutoHoldings
subjects Artificial neural networks
Automotive Engineering
Classical Mechanics
Control
Customization
Dynamical Systems
Engineering
Hamiltonian functions
Information flow
Machine learning
Mechanical Engineering
Nonlinear dynamics
Original Paper
Physics
Vibration
title Physics-informed machine learning for modeling multidimensional dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-informed%20machine%20learning%20for%20modeling%20multidimensional%20dynamics&rft.jtitle=Nonlinear%20dynamics&rft.au=Abbasi,%20Amirhassan&rft.date=2024-12-01&rft.volume=112&rft.issue=24&rft.spage=21565&rft.epage=21585&rft.pages=21565-21585&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-10163-3&rft_dat=%3Cproquest_cross%3E3117175660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117175660&rft_id=info:pmid/&rfr_iscdi=true