Physics-informed machine learning for modeling multidimensional dynamics
This study presents a hybrid modeling approach that integrates physics and machine learning for modeling multi-dimensional dynamics of a coupled nonlinear dynamical system. This approach leverages principles from classical mechanics, such as the Euler-Lagrange and Hamiltonian formalisms, to facilita...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2024-12, Vol.112 (24), p.21565-21585 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21585 |
---|---|
container_issue | 24 |
container_start_page | 21565 |
container_title | Nonlinear dynamics |
container_volume | 112 |
creator | Abbasi, Amirhassan Kambali, Prashant N. Shahidi, Parham Nataraj, C. |
description | This study presents a hybrid modeling approach that integrates physics and machine learning for modeling multi-dimensional dynamics of a coupled nonlinear dynamical system. This approach leverages principles from classical mechanics, such as the Euler-Lagrange and Hamiltonian formalisms, to facilitate the process of learning from data. The hybrid model incorporates single or multiple artificial neural networks within a customized computational graph designed based on the physics of the problem. The customization minimizes the potential of violating the underlying physics and maximizes the efficiency of information flow within the model. The capabilities of this approach are investigated for various multidimensional modeling scenarios using different configurations of a coupled nonlinear dynamical system. It is demonstrated that, in addition to improving modeling criteria such as accuracy and consistency with physics, this approach provides additional modeling benefits. The hybrid model implements a physics-based architecture, enabling the direct alteration of both conservative and non-conservative components of the dynamics. This allows for an expansion in the model’s input dimensionality and optimal allocation of input variable effects on conservative or non-conservative components of dynamics. |
doi_str_mv | 10.1007/s11071-024-10163-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3117175660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117175660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-5c7cf9d6f5ead0f8639f6a345dc47fb7310cb705a9dbbdc48a8be25637bf3c373</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hk0yS7RylqhYIeFHoL2fxpUzbZmrSHfntTV_DmaZg37z2GH0K3BO4JgHjIhIAgGOoZJkA4xfQMTQgTFNe8XZ2jCbTlBC2sLtFVzlsAoDU0E7R43xyz1xn76IYUrKmC0hsfbdVblaKP66roVRiM7U9LOPR7b3ywMfshqr4yx6hCKbhGF0712d78zin6fH76mC_w8u3ldf64xLoG2GOmhXat4Y5ZZcA1nLaOKzpjRs-E6wQloDsBTLWm64rWqKazNeNUdI5qKugU3Y29uzR8HWzey-1wSOWTLCkhggjGORRXPbp0GnJO1sld8kGloyQgT8TkSEwWYvKHmKQlRMdQLua4tumv-p_UN9Bgb-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117175660</pqid></control><display><type>article</type><title>Physics-informed machine learning for modeling multidimensional dynamics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Abbasi, Amirhassan ; Kambali, Prashant N. ; Shahidi, Parham ; Nataraj, C.</creator><creatorcontrib>Abbasi, Amirhassan ; Kambali, Prashant N. ; Shahidi, Parham ; Nataraj, C.</creatorcontrib><description>This study presents a hybrid modeling approach that integrates physics and machine learning for modeling multi-dimensional dynamics of a coupled nonlinear dynamical system. This approach leverages principles from classical mechanics, such as the Euler-Lagrange and Hamiltonian formalisms, to facilitate the process of learning from data. The hybrid model incorporates single or multiple artificial neural networks within a customized computational graph designed based on the physics of the problem. The customization minimizes the potential of violating the underlying physics and maximizes the efficiency of information flow within the model. The capabilities of this approach are investigated for various multidimensional modeling scenarios using different configurations of a coupled nonlinear dynamical system. It is demonstrated that, in addition to improving modeling criteria such as accuracy and consistency with physics, this approach provides additional modeling benefits. The hybrid model implements a physics-based architecture, enabling the direct alteration of both conservative and non-conservative components of the dynamics. This allows for an expansion in the model’s input dimensionality and optimal allocation of input variable effects on conservative or non-conservative components of dynamics.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-10163-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial neural networks ; Automotive Engineering ; Classical Mechanics ; Control ; Customization ; Dynamical Systems ; Engineering ; Hamiltonian functions ; Information flow ; Machine learning ; Mechanical Engineering ; Nonlinear dynamics ; Original Paper ; Physics ; Vibration</subject><ispartof>Nonlinear dynamics, 2024-12, Vol.112 (24), p.21565-21585</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-5c7cf9d6f5ead0f8639f6a345dc47fb7310cb705a9dbbdc48a8be25637bf3c373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-024-10163-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-024-10163-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Abbasi, Amirhassan</creatorcontrib><creatorcontrib>Kambali, Prashant N.</creatorcontrib><creatorcontrib>Shahidi, Parham</creatorcontrib><creatorcontrib>Nataraj, C.</creatorcontrib><title>Physics-informed machine learning for modeling multidimensional dynamics</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This study presents a hybrid modeling approach that integrates physics and machine learning for modeling multi-dimensional dynamics of a coupled nonlinear dynamical system. This approach leverages principles from classical mechanics, such as the Euler-Lagrange and Hamiltonian formalisms, to facilitate the process of learning from data. The hybrid model incorporates single or multiple artificial neural networks within a customized computational graph designed based on the physics of the problem. The customization minimizes the potential of violating the underlying physics and maximizes the efficiency of information flow within the model. The capabilities of this approach are investigated for various multidimensional modeling scenarios using different configurations of a coupled nonlinear dynamical system. It is demonstrated that, in addition to improving modeling criteria such as accuracy and consistency with physics, this approach provides additional modeling benefits. The hybrid model implements a physics-based architecture, enabling the direct alteration of both conservative and non-conservative components of the dynamics. This allows for an expansion in the model’s input dimensionality and optimal allocation of input variable effects on conservative or non-conservative components of dynamics.</description><subject>Artificial neural networks</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Customization</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Hamiltonian functions</subject><subject>Information flow</subject><subject>Machine learning</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hk0yS7RylqhYIeFHoL2fxpUzbZmrSHfntTV_DmaZg37z2GH0K3BO4JgHjIhIAgGOoZJkA4xfQMTQgTFNe8XZ2jCbTlBC2sLtFVzlsAoDU0E7R43xyz1xn76IYUrKmC0hsfbdVblaKP66roVRiM7U9LOPR7b3ywMfshqr4yx6hCKbhGF0712d78zin6fH76mC_w8u3ldf64xLoG2GOmhXat4Y5ZZcA1nLaOKzpjRs-E6wQloDsBTLWm64rWqKazNeNUdI5qKugU3Y29uzR8HWzey-1wSOWTLCkhggjGORRXPbp0GnJO1sld8kGloyQgT8TkSEwWYvKHmKQlRMdQLua4tumv-p_UN9Bgb-E</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Abbasi, Amirhassan</creator><creator>Kambali, Prashant N.</creator><creator>Shahidi, Parham</creator><creator>Nataraj, C.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Physics-informed machine learning for modeling multidimensional dynamics</title><author>Abbasi, Amirhassan ; Kambali, Prashant N. ; Shahidi, Parham ; Nataraj, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-5c7cf9d6f5ead0f8639f6a345dc47fb7310cb705a9dbbdc48a8be25637bf3c373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Customization</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Hamiltonian functions</topic><topic>Information flow</topic><topic>Machine learning</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbasi, Amirhassan</creatorcontrib><creatorcontrib>Kambali, Prashant N.</creatorcontrib><creatorcontrib>Shahidi, Parham</creatorcontrib><creatorcontrib>Nataraj, C.</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbasi, Amirhassan</au><au>Kambali, Prashant N.</au><au>Shahidi, Parham</au><au>Nataraj, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-informed machine learning for modeling multidimensional dynamics</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>112</volume><issue>24</issue><spage>21565</spage><epage>21585</epage><pages>21565-21585</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This study presents a hybrid modeling approach that integrates physics and machine learning for modeling multi-dimensional dynamics of a coupled nonlinear dynamical system. This approach leverages principles from classical mechanics, such as the Euler-Lagrange and Hamiltonian formalisms, to facilitate the process of learning from data. The hybrid model incorporates single or multiple artificial neural networks within a customized computational graph designed based on the physics of the problem. The customization minimizes the potential of violating the underlying physics and maximizes the efficiency of information flow within the model. The capabilities of this approach are investigated for various multidimensional modeling scenarios using different configurations of a coupled nonlinear dynamical system. It is demonstrated that, in addition to improving modeling criteria such as accuracy and consistency with physics, this approach provides additional modeling benefits. The hybrid model implements a physics-based architecture, enabling the direct alteration of both conservative and non-conservative components of the dynamics. This allows for an expansion in the model’s input dimensionality and optimal allocation of input variable effects on conservative or non-conservative components of dynamics.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-10163-3</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2024-12, Vol.112 (24), p.21565-21585 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_3117175660 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial neural networks Automotive Engineering Classical Mechanics Control Customization Dynamical Systems Engineering Hamiltonian functions Information flow Machine learning Mechanical Engineering Nonlinear dynamics Original Paper Physics Vibration |
title | Physics-informed machine learning for modeling multidimensional dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-informed%20machine%20learning%20for%20modeling%20multidimensional%20dynamics&rft.jtitle=Nonlinear%20dynamics&rft.au=Abbasi,%20Amirhassan&rft.date=2024-12-01&rft.volume=112&rft.issue=24&rft.spage=21565&rft.epage=21585&rft.pages=21565-21585&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-10163-3&rft_dat=%3Cproquest_cross%3E3117175660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117175660&rft_id=info:pmid/&rfr_iscdi=true |