MAFIKD: A Real-Time Pest Detection Method Based on Knowledge Distillation

The significant damage caused by pests to crops has always been a pressing issue in agricultural production. To address the problems of low recognition accuracy, weak feature extraction capability, and poor robustness of lightweight pest detection models, this study proposes a knowledge distillation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-10, Vol.24 (20), p.33715-33735
Hauptverfasser: Xu, Delong, Dong, Yanqi, Ma, Zhibin, Zi, Jiali, Xu, Nuo, Xia, Yi, Li, Zijie, Xu, Fu, Chen, Feixiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33735
container_issue 20
container_start_page 33715
container_title IEEE sensors journal
container_volume 24
creator Xu, Delong
Dong, Yanqi
Ma, Zhibin
Zi, Jiali
Xu, Nuo
Xia, Yi
Li, Zijie
Xu, Fu
Chen, Feixiang
description The significant damage caused by pests to crops has always been a pressing issue in agricultural production. To address the problems of low recognition accuracy, weak feature extraction capability, and poor robustness of lightweight pest detection models, this study proposes a knowledge distillation (KD) algorithm MAFIKD based on multiattention feature fusion (MA) and adaptive fine-grained feature imitation (FI). MAFIKD combines MA and FI to enhance the attention of the student to the key features of the teacher, establishing diversified knowledge such as feature correlation and sample correlation to alleviate the difficulty of knowledge transfer in pest detection models. Based on you only look once version 5 (hereinafter referred to as YOLOv5), we used a self-made pest dataset to evaluate the proposed algorithm. Experimental results show that after applying MAFIKD, YOLOv5-CSPDarknet achieved 85.7% mean average precision (mAP)@0.5 and 76.12% mmAP, which are 3.13% and 4.56% higher than the baseline, respectively. To verify the actual inference speed of the model, this study developed a mobile application (APP) for pest detection based on Android, using the ncnn convolutional neural network (NCNN) high-performance neural network forward computing framework to deploy the pest detection model offline to mobile terminals, and deployed the model on the server using the Nginx+uWSGI+Flask architecture to provide online and offline pest detection services. The experimental results show that after applying MAFIKD, YOLOv5-CSPDarknet achieved an average detection frame rate of 10.1 frames per second (FPS) on the HUAWEI Enjoy 20, and the model size was only 14.5 MB, meeting the real-time detection requirements for field pests.
doi_str_mv 10.1109/JSEN.2024.3449628
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3117136022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10666115</ieee_id><sourcerecordid>3117136022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-58bd7d71a4e033f56df74f2ecf9fd4155a1001d8f5fed1bca6c90272db47f4a03</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEmPwA5A4ROLcESdp03Ib-4CxDRAMiVuUNQ506tbRdEL8e1JtB062pcf2q4eQS2A9AJbdPL6NnnqccdkTUmYJT49IB-I4jUDJ9LjtBYukUB-n5Mz7FWOQqVh1yGTeH0-mw1vap69oymhRrJG-oG_oEBvMm6La0Dk2X5Wld8ajpWGebqqfEu0n0mHhm6IsTYudkxNnSo8Xh9ol7-PRYvAQzZ7vJ4P-LMpBJU0Up0urrAIjkQnh4sQ6JR3H3GXOyhDZQAhnUxc7tLDMTZJnjCtul1I5aZjokuv93W1dfe9CUr2qdvUmvNQCQIFIGOeBgj2V15X3NTq9rYu1qX81MN0a060x3RrTB2Nh52q_UyDiPz5JEgj-_gCyymYG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117136022</pqid></control><display><type>article</type><title>MAFIKD: A Real-Time Pest Detection Method Based on Knowledge Distillation</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Delong ; Dong, Yanqi ; Ma, Zhibin ; Zi, Jiali ; Xu, Nuo ; Xia, Yi ; Li, Zijie ; Xu, Fu ; Chen, Feixiang</creator><creatorcontrib>Xu, Delong ; Dong, Yanqi ; Ma, Zhibin ; Zi, Jiali ; Xu, Nuo ; Xia, Yi ; Li, Zijie ; Xu, Fu ; Chen, Feixiang</creatorcontrib><description>The significant damage caused by pests to crops has always been a pressing issue in agricultural production. To address the problems of low recognition accuracy, weak feature extraction capability, and poor robustness of lightweight pest detection models, this study proposes a knowledge distillation (KD) algorithm MAFIKD based on multiattention feature fusion (MA) and adaptive fine-grained feature imitation (FI). MAFIKD combines MA and FI to enhance the attention of the student to the key features of the teacher, establishing diversified knowledge such as feature correlation and sample correlation to alleviate the difficulty of knowledge transfer in pest detection models. Based on you only look once version 5 (hereinafter referred to as YOLOv5), we used a self-made pest dataset to evaluate the proposed algorithm. Experimental results show that after applying MAFIKD, YOLOv5-CSPDarknet achieved 85.7% mean average precision (mAP)@0.5 and 76.12% mmAP, which are 3.13% and 4.56% higher than the baseline, respectively. To verify the actual inference speed of the model, this study developed a mobile application (APP) for pest detection based on Android, using the ncnn convolutional neural network (NCNN) high-performance neural network forward computing framework to deploy the pest detection model offline to mobile terminals, and deployed the model on the server using the Nginx+uWSGI+Flask architecture to provide online and offline pest detection services. The experimental results show that after applying MAFIKD, YOLOv5-CSPDarknet achieved an average detection frame rate of 10.1 frames per second (FPS) on the HUAWEI Enjoy 20, and the model size was only 14.5 MB, meeting the real-time detection requirements for field pests.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3449628</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive algorithms ; Adaptive sampling ; Agricultural production ; Applications programs ; Artificial neural networks ; Computational complexity ; Computational modeling ; Correlation ; Crop production ; Damage detection ; Feature extraction ; Fine-grained feature ; Frames per second ; knowledge distillation ; Knowledge engineering ; Knowledge management ; Knowledge transfer ; Mobile computing ; multiattention fusion ; Neural networks ; Object recognition ; pest detection ; Pests ; Real time</subject><ispartof>IEEE sensors journal, 2024-10, Vol.24 (20), p.33715-33735</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-58bd7d71a4e033f56df74f2ecf9fd4155a1001d8f5fed1bca6c90272db47f4a03</cites><orcidid>0000-0002-3129-0819 ; 0000-0003-1000-8455 ; 0000-0001-8794-8643 ; 0009-0003-0772-4765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10666115$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10666115$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Delong</creatorcontrib><creatorcontrib>Dong, Yanqi</creatorcontrib><creatorcontrib>Ma, Zhibin</creatorcontrib><creatorcontrib>Zi, Jiali</creatorcontrib><creatorcontrib>Xu, Nuo</creatorcontrib><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Li, Zijie</creatorcontrib><creatorcontrib>Xu, Fu</creatorcontrib><creatorcontrib>Chen, Feixiang</creatorcontrib><title>MAFIKD: A Real-Time Pest Detection Method Based on Knowledge Distillation</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The significant damage caused by pests to crops has always been a pressing issue in agricultural production. To address the problems of low recognition accuracy, weak feature extraction capability, and poor robustness of lightweight pest detection models, this study proposes a knowledge distillation (KD) algorithm MAFIKD based on multiattention feature fusion (MA) and adaptive fine-grained feature imitation (FI). MAFIKD combines MA and FI to enhance the attention of the student to the key features of the teacher, establishing diversified knowledge such as feature correlation and sample correlation to alleviate the difficulty of knowledge transfer in pest detection models. Based on you only look once version 5 (hereinafter referred to as YOLOv5), we used a self-made pest dataset to evaluate the proposed algorithm. Experimental results show that after applying MAFIKD, YOLOv5-CSPDarknet achieved 85.7% mean average precision (mAP)@0.5 and 76.12% mmAP, which are 3.13% and 4.56% higher than the baseline, respectively. To verify the actual inference speed of the model, this study developed a mobile application (APP) for pest detection based on Android, using the ncnn convolutional neural network (NCNN) high-performance neural network forward computing framework to deploy the pest detection model offline to mobile terminals, and deployed the model on the server using the Nginx+uWSGI+Flask architecture to provide online and offline pest detection services. The experimental results show that after applying MAFIKD, YOLOv5-CSPDarknet achieved an average detection frame rate of 10.1 frames per second (FPS) on the HUAWEI Enjoy 20, and the model size was only 14.5 MB, meeting the real-time detection requirements for field pests.</description><subject>Adaptation models</subject><subject>Adaptive algorithms</subject><subject>Adaptive sampling</subject><subject>Agricultural production</subject><subject>Applications programs</subject><subject>Artificial neural networks</subject><subject>Computational complexity</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Crop production</subject><subject>Damage detection</subject><subject>Feature extraction</subject><subject>Fine-grained feature</subject><subject>Frames per second</subject><subject>knowledge distillation</subject><subject>Knowledge engineering</subject><subject>Knowledge management</subject><subject>Knowledge transfer</subject><subject>Mobile computing</subject><subject>multiattention fusion</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>pest detection</subject><subject>Pests</subject><subject>Real time</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwzAMhiMEEmPwA5A4ROLcESdp03Ib-4CxDRAMiVuUNQ506tbRdEL8e1JtB062pcf2q4eQS2A9AJbdPL6NnnqccdkTUmYJT49IB-I4jUDJ9LjtBYukUB-n5Mz7FWOQqVh1yGTeH0-mw1vap69oymhRrJG-oG_oEBvMm6La0Dk2X5Wld8ajpWGebqqfEu0n0mHhm6IsTYudkxNnSo8Xh9ol7-PRYvAQzZ7vJ4P-LMpBJU0Up0urrAIjkQnh4sQ6JR3H3GXOyhDZQAhnUxc7tLDMTZJnjCtul1I5aZjokuv93W1dfe9CUr2qdvUmvNQCQIFIGOeBgj2V15X3NTq9rYu1qX81MN0a060x3RrTB2Nh52q_UyDiPz5JEgj-_gCyymYG</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Xu, Delong</creator><creator>Dong, Yanqi</creator><creator>Ma, Zhibin</creator><creator>Zi, Jiali</creator><creator>Xu, Nuo</creator><creator>Xia, Yi</creator><creator>Li, Zijie</creator><creator>Xu, Fu</creator><creator>Chen, Feixiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3129-0819</orcidid><orcidid>https://orcid.org/0000-0003-1000-8455</orcidid><orcidid>https://orcid.org/0000-0001-8794-8643</orcidid><orcidid>https://orcid.org/0009-0003-0772-4765</orcidid></search><sort><creationdate>20241015</creationdate><title>MAFIKD: A Real-Time Pest Detection Method Based on Knowledge Distillation</title><author>Xu, Delong ; Dong, Yanqi ; Ma, Zhibin ; Zi, Jiali ; Xu, Nuo ; Xia, Yi ; Li, Zijie ; Xu, Fu ; Chen, Feixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-58bd7d71a4e033f56df74f2ecf9fd4155a1001d8f5fed1bca6c90272db47f4a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adaptive algorithms</topic><topic>Adaptive sampling</topic><topic>Agricultural production</topic><topic>Applications programs</topic><topic>Artificial neural networks</topic><topic>Computational complexity</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Crop production</topic><topic>Damage detection</topic><topic>Feature extraction</topic><topic>Fine-grained feature</topic><topic>Frames per second</topic><topic>knowledge distillation</topic><topic>Knowledge engineering</topic><topic>Knowledge management</topic><topic>Knowledge transfer</topic><topic>Mobile computing</topic><topic>multiattention fusion</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>pest detection</topic><topic>Pests</topic><topic>Real time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Delong</creatorcontrib><creatorcontrib>Dong, Yanqi</creatorcontrib><creatorcontrib>Ma, Zhibin</creatorcontrib><creatorcontrib>Zi, Jiali</creatorcontrib><creatorcontrib>Xu, Nuo</creatorcontrib><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Li, Zijie</creatorcontrib><creatorcontrib>Xu, Fu</creatorcontrib><creatorcontrib>Chen, Feixiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Delong</au><au>Dong, Yanqi</au><au>Ma, Zhibin</au><au>Zi, Jiali</au><au>Xu, Nuo</au><au>Xia, Yi</au><au>Li, Zijie</au><au>Xu, Fu</au><au>Chen, Feixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MAFIKD: A Real-Time Pest Detection Method Based on Knowledge Distillation</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-10-15</date><risdate>2024</risdate><volume>24</volume><issue>20</issue><spage>33715</spage><epage>33735</epage><pages>33715-33735</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The significant damage caused by pests to crops has always been a pressing issue in agricultural production. To address the problems of low recognition accuracy, weak feature extraction capability, and poor robustness of lightweight pest detection models, this study proposes a knowledge distillation (KD) algorithm MAFIKD based on multiattention feature fusion (MA) and adaptive fine-grained feature imitation (FI). MAFIKD combines MA and FI to enhance the attention of the student to the key features of the teacher, establishing diversified knowledge such as feature correlation and sample correlation to alleviate the difficulty of knowledge transfer in pest detection models. Based on you only look once version 5 (hereinafter referred to as YOLOv5), we used a self-made pest dataset to evaluate the proposed algorithm. Experimental results show that after applying MAFIKD, YOLOv5-CSPDarknet achieved 85.7% mean average precision (mAP)@0.5 and 76.12% mmAP, which are 3.13% and 4.56% higher than the baseline, respectively. To verify the actual inference speed of the model, this study developed a mobile application (APP) for pest detection based on Android, using the ncnn convolutional neural network (NCNN) high-performance neural network forward computing framework to deploy the pest detection model offline to mobile terminals, and deployed the model on the server using the Nginx+uWSGI+Flask architecture to provide online and offline pest detection services. The experimental results show that after applying MAFIKD, YOLOv5-CSPDarknet achieved an average detection frame rate of 10.1 frames per second (FPS) on the HUAWEI Enjoy 20, and the model size was only 14.5 MB, meeting the real-time detection requirements for field pests.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3449628</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-3129-0819</orcidid><orcidid>https://orcid.org/0000-0003-1000-8455</orcidid><orcidid>https://orcid.org/0000-0001-8794-8643</orcidid><orcidid>https://orcid.org/0009-0003-0772-4765</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-10, Vol.24 (20), p.33715-33735
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_3117136022
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive algorithms
Adaptive sampling
Agricultural production
Applications programs
Artificial neural networks
Computational complexity
Computational modeling
Correlation
Crop production
Damage detection
Feature extraction
Fine-grained feature
Frames per second
knowledge distillation
Knowledge engineering
Knowledge management
Knowledge transfer
Mobile computing
multiattention fusion
Neural networks
Object recognition
pest detection
Pests
Real time
title MAFIKD: A Real-Time Pest Detection Method Based on Knowledge Distillation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MAFIKD:%20A%20Real-Time%20Pest%20Detection%20Method%20Based%20on%20Knowledge%20Distillation&rft.jtitle=IEEE%20sensors%20journal&rft.au=Xu,%20Delong&rft.date=2024-10-15&rft.volume=24&rft.issue=20&rft.spage=33715&rft.epage=33735&rft.pages=33715-33735&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3449628&rft_dat=%3Cproquest_RIE%3E3117136022%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117136022&rft_id=info:pmid/&rft_ieee_id=10666115&rfr_iscdi=true