Real-Time Fall Detection Using Wideband Radar and a Lightweight Deep Learning Network
Radar-based fall detection in the state-of-the-art methods typically involves training on fixed long-duration data segments without considering action transitions, which does not align with practical work scenarios. In this article, a radar-based fall detection scheme that utilizes data streaming an...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-10, Vol.24 (20), p.33682-33693 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33693 |
---|---|
container_issue | 20 |
container_start_page | 33682 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Cao, Binyue Ping, Qinwen Liu, Bingwen Nian, Yongjian He, Mi |
description | Radar-based fall detection in the state-of-the-art methods typically involves training on fixed long-duration data segments without considering action transitions, which does not align with practical work scenarios. In this article, a radar-based fall detection scheme that utilizes data streaming and lightweight networks is proposed to increase the accuracy of fall detection. An adaptive clutter suppression method of morphology is proposed to mitigate clutter including ghost targets from range-time spectrograms. A lightweight network is designed to detect falls in real time. Additionally, training samples with various radar heights and distances from subjects to wideband radar are expanded to establish our multi-indoor-scene behavior dataset. The proposed scheme obtained an accuracy of 0.9963 in a new scene with unseen subjects when the proposed network has a small size of 1.9178 MB. The experimental results demonstrate that increasing the diversity of training samples can improve fall prediction performance, and our method achieves better classification performance and stronger generalizability than the current state of the art in real-time fall detection using wideband radar. |
doi_str_mv | 10.1109/JSEN.2024.3448622 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3117136002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10674764</ieee_id><sourcerecordid>3117136002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-84397933690e8b7525f630052a778affe7bcb80e36c4dec1eee782bb63fab3073</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmVnc5TaViVUqC16WzbJpKamSd2kFP-9Ce3By8x7eN4ZeAi55WzEOYseXt8n85FgQo2kUkYLcUYGPAxNwEGZ8z5LFigJn5fkqmk2jPEIQhiQ1QJdGSyLLdKpK0v6hC2mbVFXdNUU1Zp-FBkmrsrowmXO0z45Ghfrr_aA_ewKuKMxOl_1-BzbQ-2_r8lF7soGb057SFbTyXL8HMRvs5fxYxykHHQbGCUjiKTUEUOTQCjCXEvGQuEAjMtzhCRNDEOpU5VhyhERjEgSLXOXSAZySO6Pd3e-_tlj09pNvfdV99JKzoFLzZjoKH6kUl83jcfc7nyxdf7XcmZ7e7a3Z3t79mSv69wdO0X39B-vQYFW8g_Immpt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117136002</pqid></control><display><type>article</type><title>Real-Time Fall Detection Using Wideband Radar and a Lightweight Deep Learning Network</title><source>IEEE Electronic Library (IEL)</source><creator>Cao, Binyue ; Ping, Qinwen ; Liu, Bingwen ; Nian, Yongjian ; He, Mi</creator><creatorcontrib>Cao, Binyue ; Ping, Qinwen ; Liu, Bingwen ; Nian, Yongjian ; He, Mi</creatorcontrib><description>Radar-based fall detection in the state-of-the-art methods typically involves training on fixed long-duration data segments without considering action transitions, which does not align with practical work scenarios. In this article, a radar-based fall detection scheme that utilizes data streaming and lightweight networks is proposed to increase the accuracy of fall detection. An adaptive clutter suppression method of morphology is proposed to mitigate clutter including ghost targets from range-time spectrograms. A lightweight network is designed to detect falls in real time. Additionally, training samples with various radar heights and distances from subjects to wideband radar are expanded to establish our multi-indoor-scene behavior dataset. The proposed scheme obtained an accuracy of 0.9963 in a new scene with unseen subjects when the proposed network has a small size of 1.9178 MB. The experimental results demonstrate that increasing the diversity of training samples can improve fall prediction performance, and our method achieves better classification performance and stronger generalizability than the current state of the art in real-time fall detection using wideband radar.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3448622</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive sampling ; Broadband ; Clutter ; Data transmission ; Deep learning (DL) ; Fall detection ; Lightweight ; lightweight network ; Radar ; Radar data ; Radar detection ; Real time ; Real-time systems ; Spectrogram ; Spectrograms ; Target detection ; Training ; Weight reduction ; Wideband ; wideband radar</subject><ispartof>IEEE sensors journal, 2024-10, Vol.24 (20), p.33682-33693</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-84397933690e8b7525f630052a778affe7bcb80e36c4dec1eee782bb63fab3073</cites><orcidid>0009-0007-3091-1605 ; 0000-0001-6779-0850 ; 0000-0001-9983-8863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10674764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10674764$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao, Binyue</creatorcontrib><creatorcontrib>Ping, Qinwen</creatorcontrib><creatorcontrib>Liu, Bingwen</creatorcontrib><creatorcontrib>Nian, Yongjian</creatorcontrib><creatorcontrib>He, Mi</creatorcontrib><title>Real-Time Fall Detection Using Wideband Radar and a Lightweight Deep Learning Network</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Radar-based fall detection in the state-of-the-art methods typically involves training on fixed long-duration data segments without considering action transitions, which does not align with practical work scenarios. In this article, a radar-based fall detection scheme that utilizes data streaming and lightweight networks is proposed to increase the accuracy of fall detection. An adaptive clutter suppression method of morphology is proposed to mitigate clutter including ghost targets from range-time spectrograms. A lightweight network is designed to detect falls in real time. Additionally, training samples with various radar heights and distances from subjects to wideband radar are expanded to establish our multi-indoor-scene behavior dataset. The proposed scheme obtained an accuracy of 0.9963 in a new scene with unseen subjects when the proposed network has a small size of 1.9178 MB. The experimental results demonstrate that increasing the diversity of training samples can improve fall prediction performance, and our method achieves better classification performance and stronger generalizability than the current state of the art in real-time fall detection using wideband radar.</description><subject>Adaptive sampling</subject><subject>Broadband</subject><subject>Clutter</subject><subject>Data transmission</subject><subject>Deep learning (DL)</subject><subject>Fall detection</subject><subject>Lightweight</subject><subject>lightweight network</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar detection</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Spectrogram</subject><subject>Spectrograms</subject><subject>Target detection</subject><subject>Training</subject><subject>Weight reduction</subject><subject>Wideband</subject><subject>wideband radar</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmVnc5TaViVUqC16WzbJpKamSd2kFP-9Ce3By8x7eN4ZeAi55WzEOYseXt8n85FgQo2kUkYLcUYGPAxNwEGZ8z5LFigJn5fkqmk2jPEIQhiQ1QJdGSyLLdKpK0v6hC2mbVFXdNUU1Zp-FBkmrsrowmXO0z45Ghfrr_aA_ewKuKMxOl_1-BzbQ-2_r8lF7soGb057SFbTyXL8HMRvs5fxYxykHHQbGCUjiKTUEUOTQCjCXEvGQuEAjMtzhCRNDEOpU5VhyhERjEgSLXOXSAZySO6Pd3e-_tlj09pNvfdV99JKzoFLzZjoKH6kUl83jcfc7nyxdf7XcmZ7e7a3Z3t79mSv69wdO0X39B-vQYFW8g_Immpt</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Cao, Binyue</creator><creator>Ping, Qinwen</creator><creator>Liu, Bingwen</creator><creator>Nian, Yongjian</creator><creator>He, Mi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0007-3091-1605</orcidid><orcidid>https://orcid.org/0000-0001-6779-0850</orcidid><orcidid>https://orcid.org/0000-0001-9983-8863</orcidid></search><sort><creationdate>20241015</creationdate><title>Real-Time Fall Detection Using Wideband Radar and a Lightweight Deep Learning Network</title><author>Cao, Binyue ; Ping, Qinwen ; Liu, Bingwen ; Nian, Yongjian ; He, Mi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-84397933690e8b7525f630052a778affe7bcb80e36c4dec1eee782bb63fab3073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive sampling</topic><topic>Broadband</topic><topic>Clutter</topic><topic>Data transmission</topic><topic>Deep learning (DL)</topic><topic>Fall detection</topic><topic>Lightweight</topic><topic>lightweight network</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar detection</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Spectrogram</topic><topic>Spectrograms</topic><topic>Target detection</topic><topic>Training</topic><topic>Weight reduction</topic><topic>Wideband</topic><topic>wideband radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Binyue</creatorcontrib><creatorcontrib>Ping, Qinwen</creatorcontrib><creatorcontrib>Liu, Bingwen</creatorcontrib><creatorcontrib>Nian, Yongjian</creatorcontrib><creatorcontrib>He, Mi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao, Binyue</au><au>Ping, Qinwen</au><au>Liu, Bingwen</au><au>Nian, Yongjian</au><au>He, Mi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Fall Detection Using Wideband Radar and a Lightweight Deep Learning Network</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-10-15</date><risdate>2024</risdate><volume>24</volume><issue>20</issue><spage>33682</spage><epage>33693</epage><pages>33682-33693</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Radar-based fall detection in the state-of-the-art methods typically involves training on fixed long-duration data segments without considering action transitions, which does not align with practical work scenarios. In this article, a radar-based fall detection scheme that utilizes data streaming and lightweight networks is proposed to increase the accuracy of fall detection. An adaptive clutter suppression method of morphology is proposed to mitigate clutter including ghost targets from range-time spectrograms. A lightweight network is designed to detect falls in real time. Additionally, training samples with various radar heights and distances from subjects to wideband radar are expanded to establish our multi-indoor-scene behavior dataset. The proposed scheme obtained an accuracy of 0.9963 in a new scene with unseen subjects when the proposed network has a small size of 1.9178 MB. The experimental results demonstrate that increasing the diversity of training samples can improve fall prediction performance, and our method achieves better classification performance and stronger generalizability than the current state of the art in real-time fall detection using wideband radar.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3448622</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0007-3091-1605</orcidid><orcidid>https://orcid.org/0000-0001-6779-0850</orcidid><orcidid>https://orcid.org/0000-0001-9983-8863</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-10, Vol.24 (20), p.33682-33693 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_3117136002 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive sampling Broadband Clutter Data transmission Deep learning (DL) Fall detection Lightweight lightweight network Radar Radar data Radar detection Real time Real-time systems Spectrogram Spectrograms Target detection Training Weight reduction Wideband wideband radar |
title | Real-Time Fall Detection Using Wideband Radar and a Lightweight Deep Learning Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Fall%20Detection%20Using%20Wideband%20Radar%20and%20a%20Lightweight%20Deep%20Learning%20Network&rft.jtitle=IEEE%20sensors%20journal&rft.au=Cao,%20Binyue&rft.date=2024-10-15&rft.volume=24&rft.issue=20&rft.spage=33682&rft.epage=33693&rft.pages=33682-33693&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3448622&rft_dat=%3Cproquest_RIE%3E3117136002%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117136002&rft_id=info:pmid/&rft_ieee_id=10674764&rfr_iscdi=true |