Real-Time Fall Detection Using Wideband Radar and a Lightweight Deep Learning Network

Radar-based fall detection in the state-of-the-art methods typically involves training on fixed long-duration data segments without considering action transitions, which does not align with practical work scenarios. In this article, a radar-based fall detection scheme that utilizes data streaming an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-10, Vol.24 (20), p.33682-33693
Hauptverfasser: Cao, Binyue, Ping, Qinwen, Liu, Bingwen, Nian, Yongjian, He, Mi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33693
container_issue 20
container_start_page 33682
container_title IEEE sensors journal
container_volume 24
creator Cao, Binyue
Ping, Qinwen
Liu, Bingwen
Nian, Yongjian
He, Mi
description Radar-based fall detection in the state-of-the-art methods typically involves training on fixed long-duration data segments without considering action transitions, which does not align with practical work scenarios. In this article, a radar-based fall detection scheme that utilizes data streaming and lightweight networks is proposed to increase the accuracy of fall detection. An adaptive clutter suppression method of morphology is proposed to mitigate clutter including ghost targets from range-time spectrograms. A lightweight network is designed to detect falls in real time. Additionally, training samples with various radar heights and distances from subjects to wideband radar are expanded to establish our multi-indoor-scene behavior dataset. The proposed scheme obtained an accuracy of 0.9963 in a new scene with unseen subjects when the proposed network has a small size of 1.9178 MB. The experimental results demonstrate that increasing the diversity of training samples can improve fall prediction performance, and our method achieves better classification performance and stronger generalizability than the current state of the art in real-time fall detection using wideband radar.
doi_str_mv 10.1109/JSEN.2024.3448622
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3117136002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10674764</ieee_id><sourcerecordid>3117136002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-84397933690e8b7525f630052a778affe7bcb80e36c4dec1eee782bb63fab3073</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmVnc5TaViVUqC16WzbJpKamSd2kFP-9Ce3By8x7eN4ZeAi55WzEOYseXt8n85FgQo2kUkYLcUYGPAxNwEGZ8z5LFigJn5fkqmk2jPEIQhiQ1QJdGSyLLdKpK0v6hC2mbVFXdNUU1Zp-FBkmrsrowmXO0z45Ghfrr_aA_ewKuKMxOl_1-BzbQ-2_r8lF7soGb057SFbTyXL8HMRvs5fxYxykHHQbGCUjiKTUEUOTQCjCXEvGQuEAjMtzhCRNDEOpU5VhyhERjEgSLXOXSAZySO6Pd3e-_tlj09pNvfdV99JKzoFLzZjoKH6kUl83jcfc7nyxdf7XcmZ7e7a3Z3t79mSv69wdO0X39B-vQYFW8g_Immpt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117136002</pqid></control><display><type>article</type><title>Real-Time Fall Detection Using Wideband Radar and a Lightweight Deep Learning Network</title><source>IEEE Electronic Library (IEL)</source><creator>Cao, Binyue ; Ping, Qinwen ; Liu, Bingwen ; Nian, Yongjian ; He, Mi</creator><creatorcontrib>Cao, Binyue ; Ping, Qinwen ; Liu, Bingwen ; Nian, Yongjian ; He, Mi</creatorcontrib><description>Radar-based fall detection in the state-of-the-art methods typically involves training on fixed long-duration data segments without considering action transitions, which does not align with practical work scenarios. In this article, a radar-based fall detection scheme that utilizes data streaming and lightweight networks is proposed to increase the accuracy of fall detection. An adaptive clutter suppression method of morphology is proposed to mitigate clutter including ghost targets from range-time spectrograms. A lightweight network is designed to detect falls in real time. Additionally, training samples with various radar heights and distances from subjects to wideband radar are expanded to establish our multi-indoor-scene behavior dataset. The proposed scheme obtained an accuracy of 0.9963 in a new scene with unseen subjects when the proposed network has a small size of 1.9178 MB. The experimental results demonstrate that increasing the diversity of training samples can improve fall prediction performance, and our method achieves better classification performance and stronger generalizability than the current state of the art in real-time fall detection using wideband radar.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3448622</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive sampling ; Broadband ; Clutter ; Data transmission ; Deep learning (DL) ; Fall detection ; Lightweight ; lightweight network ; Radar ; Radar data ; Radar detection ; Real time ; Real-time systems ; Spectrogram ; Spectrograms ; Target detection ; Training ; Weight reduction ; Wideband ; wideband radar</subject><ispartof>IEEE sensors journal, 2024-10, Vol.24 (20), p.33682-33693</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-84397933690e8b7525f630052a778affe7bcb80e36c4dec1eee782bb63fab3073</cites><orcidid>0009-0007-3091-1605 ; 0000-0001-6779-0850 ; 0000-0001-9983-8863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10674764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10674764$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao, Binyue</creatorcontrib><creatorcontrib>Ping, Qinwen</creatorcontrib><creatorcontrib>Liu, Bingwen</creatorcontrib><creatorcontrib>Nian, Yongjian</creatorcontrib><creatorcontrib>He, Mi</creatorcontrib><title>Real-Time Fall Detection Using Wideband Radar and a Lightweight Deep Learning Network</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Radar-based fall detection in the state-of-the-art methods typically involves training on fixed long-duration data segments without considering action transitions, which does not align with practical work scenarios. In this article, a radar-based fall detection scheme that utilizes data streaming and lightweight networks is proposed to increase the accuracy of fall detection. An adaptive clutter suppression method of morphology is proposed to mitigate clutter including ghost targets from range-time spectrograms. A lightweight network is designed to detect falls in real time. Additionally, training samples with various radar heights and distances from subjects to wideband radar are expanded to establish our multi-indoor-scene behavior dataset. The proposed scheme obtained an accuracy of 0.9963 in a new scene with unseen subjects when the proposed network has a small size of 1.9178 MB. The experimental results demonstrate that increasing the diversity of training samples can improve fall prediction performance, and our method achieves better classification performance and stronger generalizability than the current state of the art in real-time fall detection using wideband radar.</description><subject>Adaptive sampling</subject><subject>Broadband</subject><subject>Clutter</subject><subject>Data transmission</subject><subject>Deep learning (DL)</subject><subject>Fall detection</subject><subject>Lightweight</subject><subject>lightweight network</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar detection</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Spectrogram</subject><subject>Spectrograms</subject><subject>Target detection</subject><subject>Training</subject><subject>Weight reduction</subject><subject>Wideband</subject><subject>wideband radar</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmVnc5TaViVUqC16WzbJpKamSd2kFP-9Ce3By8x7eN4ZeAi55WzEOYseXt8n85FgQo2kUkYLcUYGPAxNwEGZ8z5LFigJn5fkqmk2jPEIQhiQ1QJdGSyLLdKpK0v6hC2mbVFXdNUU1Zp-FBkmrsrowmXO0z45Ghfrr_aA_ewKuKMxOl_1-BzbQ-2_r8lF7soGb057SFbTyXL8HMRvs5fxYxykHHQbGCUjiKTUEUOTQCjCXEvGQuEAjMtzhCRNDEOpU5VhyhERjEgSLXOXSAZySO6Pd3e-_tlj09pNvfdV99JKzoFLzZjoKH6kUl83jcfc7nyxdf7XcmZ7e7a3Z3t79mSv69wdO0X39B-vQYFW8g_Immpt</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Cao, Binyue</creator><creator>Ping, Qinwen</creator><creator>Liu, Bingwen</creator><creator>Nian, Yongjian</creator><creator>He, Mi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0007-3091-1605</orcidid><orcidid>https://orcid.org/0000-0001-6779-0850</orcidid><orcidid>https://orcid.org/0000-0001-9983-8863</orcidid></search><sort><creationdate>20241015</creationdate><title>Real-Time Fall Detection Using Wideband Radar and a Lightweight Deep Learning Network</title><author>Cao, Binyue ; Ping, Qinwen ; Liu, Bingwen ; Nian, Yongjian ; He, Mi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-84397933690e8b7525f630052a778affe7bcb80e36c4dec1eee782bb63fab3073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive sampling</topic><topic>Broadband</topic><topic>Clutter</topic><topic>Data transmission</topic><topic>Deep learning (DL)</topic><topic>Fall detection</topic><topic>Lightweight</topic><topic>lightweight network</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar detection</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Spectrogram</topic><topic>Spectrograms</topic><topic>Target detection</topic><topic>Training</topic><topic>Weight reduction</topic><topic>Wideband</topic><topic>wideband radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Binyue</creatorcontrib><creatorcontrib>Ping, Qinwen</creatorcontrib><creatorcontrib>Liu, Bingwen</creatorcontrib><creatorcontrib>Nian, Yongjian</creatorcontrib><creatorcontrib>He, Mi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao, Binyue</au><au>Ping, Qinwen</au><au>Liu, Bingwen</au><au>Nian, Yongjian</au><au>He, Mi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Fall Detection Using Wideband Radar and a Lightweight Deep Learning Network</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-10-15</date><risdate>2024</risdate><volume>24</volume><issue>20</issue><spage>33682</spage><epage>33693</epage><pages>33682-33693</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Radar-based fall detection in the state-of-the-art methods typically involves training on fixed long-duration data segments without considering action transitions, which does not align with practical work scenarios. In this article, a radar-based fall detection scheme that utilizes data streaming and lightweight networks is proposed to increase the accuracy of fall detection. An adaptive clutter suppression method of morphology is proposed to mitigate clutter including ghost targets from range-time spectrograms. A lightweight network is designed to detect falls in real time. Additionally, training samples with various radar heights and distances from subjects to wideband radar are expanded to establish our multi-indoor-scene behavior dataset. The proposed scheme obtained an accuracy of 0.9963 in a new scene with unseen subjects when the proposed network has a small size of 1.9178 MB. The experimental results demonstrate that increasing the diversity of training samples can improve fall prediction performance, and our method achieves better classification performance and stronger generalizability than the current state of the art in real-time fall detection using wideband radar.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3448622</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0007-3091-1605</orcidid><orcidid>https://orcid.org/0000-0001-6779-0850</orcidid><orcidid>https://orcid.org/0000-0001-9983-8863</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-10, Vol.24 (20), p.33682-33693
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_3117136002
source IEEE Electronic Library (IEL)
subjects Adaptive sampling
Broadband
Clutter
Data transmission
Deep learning (DL)
Fall detection
Lightweight
lightweight network
Radar
Radar data
Radar detection
Real time
Real-time systems
Spectrogram
Spectrograms
Target detection
Training
Weight reduction
Wideband
wideband radar
title Real-Time Fall Detection Using Wideband Radar and a Lightweight Deep Learning Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Fall%20Detection%20Using%20Wideband%20Radar%20and%20a%20Lightweight%20Deep%20Learning%20Network&rft.jtitle=IEEE%20sensors%20journal&rft.au=Cao,%20Binyue&rft.date=2024-10-15&rft.volume=24&rft.issue=20&rft.spage=33682&rft.epage=33693&rft.pages=33682-33693&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3448622&rft_dat=%3Cproquest_RIE%3E3117136002%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117136002&rft_id=info:pmid/&rft_ieee_id=10674764&rfr_iscdi=true