Pose and Path Planning for Industrial Robot Surface Machining Based on Direction Fields

This study proposes a pose and path planning method based on direction fields, addressing challenges in industrial robot surface machining. These challenges include limited machining accuracy and difficult path planning arising from the robot's low stiffness and high nonlinearity between joint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2024-11, Vol.9 (11), p.10455-10462
Hauptverfasser: Wu, Lei, Zang, Xizhe, Yin, Wenxin, Zhang, Xuehe, Li, Changle, Zhu, Yanhe, Zhao, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10462
container_issue 11
container_start_page 10455
container_title IEEE robotics and automation letters
container_volume 9
creator Wu, Lei
Zang, Xizhe
Yin, Wenxin
Zhang, Xuehe
Li, Changle
Zhu, Yanhe
Zhao, Jie
description This study proposes a pose and path planning method based on direction fields, addressing challenges in industrial robot surface machining. These challenges include limited machining accuracy and difficult path planning arising from the robot's low stiffness and high nonlinearity between joint and operational spaces. The method consists of two key components. Firstly, a smooth pose planning method is proposed, independent of specific machining paths. It guides robot pose by constructing the smooth 1-direction field on the freeform surface, ensuring smooth pose transitions between adjacent machining points. Secondly, a path planning method based on a 2-direction field is proposed. The approach generates a 2-direction field by considering the robot's performance and task requirements. After integrating the 2-direction field to obtain a scalar field, iso-lines are extracted as the machining paths. The results demonstrate that the proposed method can generate smooth machining poses and continuous paths, even for complex surfaces where other methods may fail to generate fully reachable machining paths. The proposed method could achieve different path performances, such as high manipulator-velocity-ratio (MVR), high tangential stiffness, and high machining efficiency, by tracking specific 2-direction fields.
doi_str_mv 10.1109/LRA.2024.3474521
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3117128585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10705090</ieee_id><sourcerecordid>3117128585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-fc63556f8d58375d89f12d07d076e4cad34c47c37b8404763d95d58430c5d78f3</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWGr3LlwEXE9NJskks6zVaqFiqYrLkObDpoxJTWYW_nuntovCg3cX574HB4BrjMYYo_pusZqMS1TSMaGcshKfgUFJOC8Ir6rzk3wJRjlvEUKYlZzUbAA-lzFbqIKBS9Vu4LJRIfjwBV1McB5Ml9vkVQNXcR1b-NYlp7SFL0pv_D92r7I1MAb44JPVre_TzNvG5Ctw4VST7ei4h-Bj9vg-fS4Wr0_z6WRRaMxZWzhdEcYqJwwThDMjaodLg3g_laVaGUI15ZrwtaCI8oqYmvUoJUgzw4UjQ3B7uLtL8aezuZXb2KXQv5QEY45LwQTrKXSgdIo5J-vkLvlvlX4lRnJvUPYG5d6gPBrsKzeHirfWnuAcMVQj8gfEQmqr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117128585</pqid></control><display><type>article</type><title>Pose and Path Planning for Industrial Robot Surface Machining Based on Direction Fields</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Lei ; Zang, Xizhe ; Yin, Wenxin ; Zhang, Xuehe ; Li, Changle ; Zhu, Yanhe ; Zhao, Jie</creator><creatorcontrib>Wu, Lei ; Zang, Xizhe ; Yin, Wenxin ; Zhang, Xuehe ; Li, Changle ; Zhu, Yanhe ; Zhao, Jie</creatorcontrib><description>This study proposes a pose and path planning method based on direction fields, addressing challenges in industrial robot surface machining. These challenges include limited machining accuracy and difficult path planning arising from the robot's low stiffness and high nonlinearity between joint and operational spaces. The method consists of two key components. Firstly, a smooth pose planning method is proposed, independent of specific machining paths. It guides robot pose by constructing the smooth 1-direction field on the freeform surface, ensuring smooth pose transitions between adjacent machining points. Secondly, a path planning method based on a 2-direction field is proposed. The approach generates a 2-direction field by considering the robot's performance and task requirements. After integrating the 2-direction field to obtain a scalar field, iso-lines are extracted as the machining paths. The results demonstrate that the proposed method can generate smooth machining poses and continuous paths, even for complex surfaces where other methods may fail to generate fully reachable machining paths. The proposed method could achieve different path performances, such as high manipulator-velocity-ratio (MVR), high tangential stiffness, and high machining efficiency, by tracking specific 2-direction fields.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3474521</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>computational geometry ; Constrained motion planning ; Feeds ; Force ; Industrial robots ; industry robot machining ; Machining ; Path planning ; Planning ; pose and path planning ; Robot arms ; Robot kinematics ; Robots ; Scalars ; Service robots ; Stiffness ; Three-dimensional displays ; Vectors</subject><ispartof>IEEE robotics and automation letters, 2024-11, Vol.9 (11), p.10455-10462</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-fc63556f8d58375d89f12d07d076e4cad34c47c37b8404763d95d58430c5d78f3</cites><orcidid>0000-0002-2587-0454 ; 0000-0002-5124-3999 ; 0000-0002-1960-6278 ; 0000-0001-8138-2802 ; 0000-0002-6086-9387 ; 0009-0006-0663-9560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10705090$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10705090$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Zang, Xizhe</creatorcontrib><creatorcontrib>Yin, Wenxin</creatorcontrib><creatorcontrib>Zhang, Xuehe</creatorcontrib><creatorcontrib>Li, Changle</creatorcontrib><creatorcontrib>Zhu, Yanhe</creatorcontrib><creatorcontrib>Zhao, Jie</creatorcontrib><title>Pose and Path Planning for Industrial Robot Surface Machining Based on Direction Fields</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>This study proposes a pose and path planning method based on direction fields, addressing challenges in industrial robot surface machining. These challenges include limited machining accuracy and difficult path planning arising from the robot's low stiffness and high nonlinearity between joint and operational spaces. The method consists of two key components. Firstly, a smooth pose planning method is proposed, independent of specific machining paths. It guides robot pose by constructing the smooth 1-direction field on the freeform surface, ensuring smooth pose transitions between adjacent machining points. Secondly, a path planning method based on a 2-direction field is proposed. The approach generates a 2-direction field by considering the robot's performance and task requirements. After integrating the 2-direction field to obtain a scalar field, iso-lines are extracted as the machining paths. The results demonstrate that the proposed method can generate smooth machining poses and continuous paths, even for complex surfaces where other methods may fail to generate fully reachable machining paths. The proposed method could achieve different path performances, such as high manipulator-velocity-ratio (MVR), high tangential stiffness, and high machining efficiency, by tracking specific 2-direction fields.</description><subject>computational geometry</subject><subject>Constrained motion planning</subject><subject>Feeds</subject><subject>Force</subject><subject>Industrial robots</subject><subject>industry robot machining</subject><subject>Machining</subject><subject>Path planning</subject><subject>Planning</subject><subject>pose and path planning</subject><subject>Robot arms</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Scalars</subject><subject>Service robots</subject><subject>Stiffness</subject><subject>Three-dimensional displays</subject><subject>Vectors</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEURYMoWGr3LlwEXE9NJskks6zVaqFiqYrLkObDpoxJTWYW_nuntovCg3cX574HB4BrjMYYo_pusZqMS1TSMaGcshKfgUFJOC8Ir6rzk3wJRjlvEUKYlZzUbAA-lzFbqIKBS9Vu4LJRIfjwBV1McB5Ml9vkVQNXcR1b-NYlp7SFL0pv_D92r7I1MAb44JPVre_TzNvG5Ctw4VST7ei4h-Bj9vg-fS4Wr0_z6WRRaMxZWzhdEcYqJwwThDMjaodLg3g_laVaGUI15ZrwtaCI8oqYmvUoJUgzw4UjQ3B7uLtL8aezuZXb2KXQv5QEY45LwQTrKXSgdIo5J-vkLvlvlX4lRnJvUPYG5d6gPBrsKzeHirfWnuAcMVQj8gfEQmqr</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Wu, Lei</creator><creator>Zang, Xizhe</creator><creator>Yin, Wenxin</creator><creator>Zhang, Xuehe</creator><creator>Li, Changle</creator><creator>Zhu, Yanhe</creator><creator>Zhao, Jie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2587-0454</orcidid><orcidid>https://orcid.org/0000-0002-5124-3999</orcidid><orcidid>https://orcid.org/0000-0002-1960-6278</orcidid><orcidid>https://orcid.org/0000-0001-8138-2802</orcidid><orcidid>https://orcid.org/0000-0002-6086-9387</orcidid><orcidid>https://orcid.org/0009-0006-0663-9560</orcidid></search><sort><creationdate>20241101</creationdate><title>Pose and Path Planning for Industrial Robot Surface Machining Based on Direction Fields</title><author>Wu, Lei ; Zang, Xizhe ; Yin, Wenxin ; Zhang, Xuehe ; Li, Changle ; Zhu, Yanhe ; Zhao, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-fc63556f8d58375d89f12d07d076e4cad34c47c37b8404763d95d58430c5d78f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>computational geometry</topic><topic>Constrained motion planning</topic><topic>Feeds</topic><topic>Force</topic><topic>Industrial robots</topic><topic>industry robot machining</topic><topic>Machining</topic><topic>Path planning</topic><topic>Planning</topic><topic>pose and path planning</topic><topic>Robot arms</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Scalars</topic><topic>Service robots</topic><topic>Stiffness</topic><topic>Three-dimensional displays</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Zang, Xizhe</creatorcontrib><creatorcontrib>Yin, Wenxin</creatorcontrib><creatorcontrib>Zhang, Xuehe</creatorcontrib><creatorcontrib>Li, Changle</creatorcontrib><creatorcontrib>Zhu, Yanhe</creatorcontrib><creatorcontrib>Zhao, Jie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Lei</au><au>Zang, Xizhe</au><au>Yin, Wenxin</au><au>Zhang, Xuehe</au><au>Li, Changle</au><au>Zhu, Yanhe</au><au>Zhao, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pose and Path Planning for Industrial Robot Surface Machining Based on Direction Fields</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>9</volume><issue>11</issue><spage>10455</spage><epage>10462</epage><pages>10455-10462</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>This study proposes a pose and path planning method based on direction fields, addressing challenges in industrial robot surface machining. These challenges include limited machining accuracy and difficult path planning arising from the robot's low stiffness and high nonlinearity between joint and operational spaces. The method consists of two key components. Firstly, a smooth pose planning method is proposed, independent of specific machining paths. It guides robot pose by constructing the smooth 1-direction field on the freeform surface, ensuring smooth pose transitions between adjacent machining points. Secondly, a path planning method based on a 2-direction field is proposed. The approach generates a 2-direction field by considering the robot's performance and task requirements. After integrating the 2-direction field to obtain a scalar field, iso-lines are extracted as the machining paths. The results demonstrate that the proposed method can generate smooth machining poses and continuous paths, even for complex surfaces where other methods may fail to generate fully reachable machining paths. The proposed method could achieve different path performances, such as high manipulator-velocity-ratio (MVR), high tangential stiffness, and high machining efficiency, by tracking specific 2-direction fields.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2024.3474521</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2587-0454</orcidid><orcidid>https://orcid.org/0000-0002-5124-3999</orcidid><orcidid>https://orcid.org/0000-0002-1960-6278</orcidid><orcidid>https://orcid.org/0000-0001-8138-2802</orcidid><orcidid>https://orcid.org/0000-0002-6086-9387</orcidid><orcidid>https://orcid.org/0009-0006-0663-9560</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2024-11, Vol.9 (11), p.10455-10462
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_3117128585
source IEEE Electronic Library (IEL)
subjects computational geometry
Constrained motion planning
Feeds
Force
Industrial robots
industry robot machining
Machining
Path planning
Planning
pose and path planning
Robot arms
Robot kinematics
Robots
Scalars
Service robots
Stiffness
Three-dimensional displays
Vectors
title Pose and Path Planning for Industrial Robot Surface Machining Based on Direction Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pose%20and%20Path%20Planning%20for%20Industrial%20Robot%20Surface%20Machining%20Based%20on%20Direction%20Fields&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Wu,%20Lei&rft.date=2024-11-01&rft.volume=9&rft.issue=11&rft.spage=10455&rft.epage=10462&rft.pages=10455-10462&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3474521&rft_dat=%3Cproquest_RIE%3E3117128585%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117128585&rft_id=info:pmid/&rft_ieee_id=10705090&rfr_iscdi=true