Pose and Path Planning for Industrial Robot Surface Machining Based on Direction Fields
This study proposes a pose and path planning method based on direction fields, addressing challenges in industrial robot surface machining. These challenges include limited machining accuracy and difficult path planning arising from the robot's low stiffness and high nonlinearity between joint...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2024-11, Vol.9 (11), p.10455-10462 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10462 |
---|---|
container_issue | 11 |
container_start_page | 10455 |
container_title | IEEE robotics and automation letters |
container_volume | 9 |
creator | Wu, Lei Zang, Xizhe Yin, Wenxin Zhang, Xuehe Li, Changle Zhu, Yanhe Zhao, Jie |
description | This study proposes a pose and path planning method based on direction fields, addressing challenges in industrial robot surface machining. These challenges include limited machining accuracy and difficult path planning arising from the robot's low stiffness and high nonlinearity between joint and operational spaces. The method consists of two key components. Firstly, a smooth pose planning method is proposed, independent of specific machining paths. It guides robot pose by constructing the smooth 1-direction field on the freeform surface, ensuring smooth pose transitions between adjacent machining points. Secondly, a path planning method based on a 2-direction field is proposed. The approach generates a 2-direction field by considering the robot's performance and task requirements. After integrating the 2-direction field to obtain a scalar field, iso-lines are extracted as the machining paths. The results demonstrate that the proposed method can generate smooth machining poses and continuous paths, even for complex surfaces where other methods may fail to generate fully reachable machining paths. The proposed method could achieve different path performances, such as high manipulator-velocity-ratio (MVR), high tangential stiffness, and high machining efficiency, by tracking specific 2-direction fields. |
doi_str_mv | 10.1109/LRA.2024.3474521 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3117128585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10705090</ieee_id><sourcerecordid>3117128585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-fc63556f8d58375d89f12d07d076e4cad34c47c37b8404763d95d58430c5d78f3</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWGr3LlwEXE9NJskks6zVaqFiqYrLkObDpoxJTWYW_nuntovCg3cX574HB4BrjMYYo_pusZqMS1TSMaGcshKfgUFJOC8Ir6rzk3wJRjlvEUKYlZzUbAA-lzFbqIKBS9Vu4LJRIfjwBV1McB5Ml9vkVQNXcR1b-NYlp7SFL0pv_D92r7I1MAb44JPVre_TzNvG5Ctw4VST7ei4h-Bj9vg-fS4Wr0_z6WRRaMxZWzhdEcYqJwwThDMjaodLg3g_laVaGUI15ZrwtaCI8oqYmvUoJUgzw4UjQ3B7uLtL8aezuZXb2KXQv5QEY45LwQTrKXSgdIo5J-vkLvlvlX4lRnJvUPYG5d6gPBrsKzeHirfWnuAcMVQj8gfEQmqr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117128585</pqid></control><display><type>article</type><title>Pose and Path Planning for Industrial Robot Surface Machining Based on Direction Fields</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Lei ; Zang, Xizhe ; Yin, Wenxin ; Zhang, Xuehe ; Li, Changle ; Zhu, Yanhe ; Zhao, Jie</creator><creatorcontrib>Wu, Lei ; Zang, Xizhe ; Yin, Wenxin ; Zhang, Xuehe ; Li, Changle ; Zhu, Yanhe ; Zhao, Jie</creatorcontrib><description>This study proposes a pose and path planning method based on direction fields, addressing challenges in industrial robot surface machining. These challenges include limited machining accuracy and difficult path planning arising from the robot's low stiffness and high nonlinearity between joint and operational spaces. The method consists of two key components. Firstly, a smooth pose planning method is proposed, independent of specific machining paths. It guides robot pose by constructing the smooth 1-direction field on the freeform surface, ensuring smooth pose transitions between adjacent machining points. Secondly, a path planning method based on a 2-direction field is proposed. The approach generates a 2-direction field by considering the robot's performance and task requirements. After integrating the 2-direction field to obtain a scalar field, iso-lines are extracted as the machining paths. The results demonstrate that the proposed method can generate smooth machining poses and continuous paths, even for complex surfaces where other methods may fail to generate fully reachable machining paths. The proposed method could achieve different path performances, such as high manipulator-velocity-ratio (MVR), high tangential stiffness, and high machining efficiency, by tracking specific 2-direction fields.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3474521</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>computational geometry ; Constrained motion planning ; Feeds ; Force ; Industrial robots ; industry robot machining ; Machining ; Path planning ; Planning ; pose and path planning ; Robot arms ; Robot kinematics ; Robots ; Scalars ; Service robots ; Stiffness ; Three-dimensional displays ; Vectors</subject><ispartof>IEEE robotics and automation letters, 2024-11, Vol.9 (11), p.10455-10462</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-fc63556f8d58375d89f12d07d076e4cad34c47c37b8404763d95d58430c5d78f3</cites><orcidid>0000-0002-2587-0454 ; 0000-0002-5124-3999 ; 0000-0002-1960-6278 ; 0000-0001-8138-2802 ; 0000-0002-6086-9387 ; 0009-0006-0663-9560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10705090$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10705090$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Zang, Xizhe</creatorcontrib><creatorcontrib>Yin, Wenxin</creatorcontrib><creatorcontrib>Zhang, Xuehe</creatorcontrib><creatorcontrib>Li, Changle</creatorcontrib><creatorcontrib>Zhu, Yanhe</creatorcontrib><creatorcontrib>Zhao, Jie</creatorcontrib><title>Pose and Path Planning for Industrial Robot Surface Machining Based on Direction Fields</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>This study proposes a pose and path planning method based on direction fields, addressing challenges in industrial robot surface machining. These challenges include limited machining accuracy and difficult path planning arising from the robot's low stiffness and high nonlinearity between joint and operational spaces. The method consists of two key components. Firstly, a smooth pose planning method is proposed, independent of specific machining paths. It guides robot pose by constructing the smooth 1-direction field on the freeform surface, ensuring smooth pose transitions between adjacent machining points. Secondly, a path planning method based on a 2-direction field is proposed. The approach generates a 2-direction field by considering the robot's performance and task requirements. After integrating the 2-direction field to obtain a scalar field, iso-lines are extracted as the machining paths. The results demonstrate that the proposed method can generate smooth machining poses and continuous paths, even for complex surfaces where other methods may fail to generate fully reachable machining paths. The proposed method could achieve different path performances, such as high manipulator-velocity-ratio (MVR), high tangential stiffness, and high machining efficiency, by tracking specific 2-direction fields.</description><subject>computational geometry</subject><subject>Constrained motion planning</subject><subject>Feeds</subject><subject>Force</subject><subject>Industrial robots</subject><subject>industry robot machining</subject><subject>Machining</subject><subject>Path planning</subject><subject>Planning</subject><subject>pose and path planning</subject><subject>Robot arms</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Scalars</subject><subject>Service robots</subject><subject>Stiffness</subject><subject>Three-dimensional displays</subject><subject>Vectors</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEURYMoWGr3LlwEXE9NJskks6zVaqFiqYrLkObDpoxJTWYW_nuntovCg3cX574HB4BrjMYYo_pusZqMS1TSMaGcshKfgUFJOC8Ir6rzk3wJRjlvEUKYlZzUbAA-lzFbqIKBS9Vu4LJRIfjwBV1McB5Ml9vkVQNXcR1b-NYlp7SFL0pv_D92r7I1MAb44JPVre_TzNvG5Ctw4VST7ei4h-Bj9vg-fS4Wr0_z6WRRaMxZWzhdEcYqJwwThDMjaodLg3g_laVaGUI15ZrwtaCI8oqYmvUoJUgzw4UjQ3B7uLtL8aezuZXb2KXQv5QEY45LwQTrKXSgdIo5J-vkLvlvlX4lRnJvUPYG5d6gPBrsKzeHirfWnuAcMVQj8gfEQmqr</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Wu, Lei</creator><creator>Zang, Xizhe</creator><creator>Yin, Wenxin</creator><creator>Zhang, Xuehe</creator><creator>Li, Changle</creator><creator>Zhu, Yanhe</creator><creator>Zhao, Jie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2587-0454</orcidid><orcidid>https://orcid.org/0000-0002-5124-3999</orcidid><orcidid>https://orcid.org/0000-0002-1960-6278</orcidid><orcidid>https://orcid.org/0000-0001-8138-2802</orcidid><orcidid>https://orcid.org/0000-0002-6086-9387</orcidid><orcidid>https://orcid.org/0009-0006-0663-9560</orcidid></search><sort><creationdate>20241101</creationdate><title>Pose and Path Planning for Industrial Robot Surface Machining Based on Direction Fields</title><author>Wu, Lei ; Zang, Xizhe ; Yin, Wenxin ; Zhang, Xuehe ; Li, Changle ; Zhu, Yanhe ; Zhao, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-fc63556f8d58375d89f12d07d076e4cad34c47c37b8404763d95d58430c5d78f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>computational geometry</topic><topic>Constrained motion planning</topic><topic>Feeds</topic><topic>Force</topic><topic>Industrial robots</topic><topic>industry robot machining</topic><topic>Machining</topic><topic>Path planning</topic><topic>Planning</topic><topic>pose and path planning</topic><topic>Robot arms</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Scalars</topic><topic>Service robots</topic><topic>Stiffness</topic><topic>Three-dimensional displays</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Zang, Xizhe</creatorcontrib><creatorcontrib>Yin, Wenxin</creatorcontrib><creatorcontrib>Zhang, Xuehe</creatorcontrib><creatorcontrib>Li, Changle</creatorcontrib><creatorcontrib>Zhu, Yanhe</creatorcontrib><creatorcontrib>Zhao, Jie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Lei</au><au>Zang, Xizhe</au><au>Yin, Wenxin</au><au>Zhang, Xuehe</au><au>Li, Changle</au><au>Zhu, Yanhe</au><au>Zhao, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pose and Path Planning for Industrial Robot Surface Machining Based on Direction Fields</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>9</volume><issue>11</issue><spage>10455</spage><epage>10462</epage><pages>10455-10462</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>This study proposes a pose and path planning method based on direction fields, addressing challenges in industrial robot surface machining. These challenges include limited machining accuracy and difficult path planning arising from the robot's low stiffness and high nonlinearity between joint and operational spaces. The method consists of two key components. Firstly, a smooth pose planning method is proposed, independent of specific machining paths. It guides robot pose by constructing the smooth 1-direction field on the freeform surface, ensuring smooth pose transitions between adjacent machining points. Secondly, a path planning method based on a 2-direction field is proposed. The approach generates a 2-direction field by considering the robot's performance and task requirements. After integrating the 2-direction field to obtain a scalar field, iso-lines are extracted as the machining paths. The results demonstrate that the proposed method can generate smooth machining poses and continuous paths, even for complex surfaces where other methods may fail to generate fully reachable machining paths. The proposed method could achieve different path performances, such as high manipulator-velocity-ratio (MVR), high tangential stiffness, and high machining efficiency, by tracking specific 2-direction fields.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2024.3474521</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2587-0454</orcidid><orcidid>https://orcid.org/0000-0002-5124-3999</orcidid><orcidid>https://orcid.org/0000-0002-1960-6278</orcidid><orcidid>https://orcid.org/0000-0001-8138-2802</orcidid><orcidid>https://orcid.org/0000-0002-6086-9387</orcidid><orcidid>https://orcid.org/0009-0006-0663-9560</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2024-11, Vol.9 (11), p.10455-10462 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_3117128585 |
source | IEEE Electronic Library (IEL) |
subjects | computational geometry Constrained motion planning Feeds Force Industrial robots industry robot machining Machining Path planning Planning pose and path planning Robot arms Robot kinematics Robots Scalars Service robots Stiffness Three-dimensional displays Vectors |
title | Pose and Path Planning for Industrial Robot Surface Machining Based on Direction Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pose%20and%20Path%20Planning%20for%20Industrial%20Robot%20Surface%20Machining%20Based%20on%20Direction%20Fields&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Wu,%20Lei&rft.date=2024-11-01&rft.volume=9&rft.issue=11&rft.spage=10455&rft.epage=10462&rft.pages=10455-10462&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3474521&rft_dat=%3Cproquest_RIE%3E3117128585%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117128585&rft_id=info:pmid/&rft_ieee_id=10705090&rfr_iscdi=true |