DFM: Interpolant-free Dual Flow Matching

Continuous normalizing flows (CNFs) can model data distributions with expressive infinite-length architectures. But this modeling involves computationally expensive process of solving an ordinary differential equation (ODE) during maximum likelihood training. Recently proposed flow matching (FM) fra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Gudovskiy, Denis, Okuno, Tomoyuki, Nakata, Yohei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gudovskiy, Denis
Okuno, Tomoyuki
Nakata, Yohei
description Continuous normalizing flows (CNFs) can model data distributions with expressive infinite-length architectures. But this modeling involves computationally expensive process of solving an ordinary differential equation (ODE) during maximum likelihood training. Recently proposed flow matching (FM) framework allows to substantially simplify the training phase using a regression objective with the interpolated forward vector field. In this paper, we propose an interpolant-free dual flow matching (DFM) approach without explicit assumptions about the modeled vector field. DFM optimizes the forward and, additionally, a reverse vector field model using a novel objective that facilitates bijectivity of the forward and reverse transformations. Our experiments with the SMAP unsupervised anomaly detection show advantages of DFM when compared to the CNF trained with either maximum likelihood or FM objectives with the state-of-the-art performance metrics.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3116752103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116752103</sourcerecordid><originalsourceid>FETCH-proquest_journals_31167521033</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcHHztVLwzCtJLSrIz0nMK9FNK0pNVXApTcxRcMvJL1fwTSxJzsjMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXhjQ0Mzc1MjQwNjY-JUAQA4pC8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116752103</pqid></control><display><type>article</type><title>DFM: Interpolant-free Dual Flow Matching</title><source>Free E- Journals</source><creator>Gudovskiy, Denis ; Okuno, Tomoyuki ; Nakata, Yohei</creator><creatorcontrib>Gudovskiy, Denis ; Okuno, Tomoyuki ; Nakata, Yohei</creatorcontrib><description>Continuous normalizing flows (CNFs) can model data distributions with expressive infinite-length architectures. But this modeling involves computationally expensive process of solving an ordinary differential equation (ODE) during maximum likelihood training. Recently proposed flow matching (FM) framework allows to substantially simplify the training phase using a regression objective with the interpolated forward vector field. In this paper, we propose an interpolant-free dual flow matching (DFM) approach without explicit assumptions about the modeled vector field. DFM optimizes the forward and, additionally, a reverse vector field model using a novel objective that facilitates bijectivity of the forward and reverse transformations. Our experiments with the SMAP unsupervised anomaly detection show advantages of DFM when compared to the CNF trained with either maximum likelihood or FM objectives with the state-of-the-art performance metrics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anomalies ; Differential equations ; Fields (mathematics) ; Matching ; Performance measurement</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gudovskiy, Denis</creatorcontrib><creatorcontrib>Okuno, Tomoyuki</creatorcontrib><creatorcontrib>Nakata, Yohei</creatorcontrib><title>DFM: Interpolant-free Dual Flow Matching</title><title>arXiv.org</title><description>Continuous normalizing flows (CNFs) can model data distributions with expressive infinite-length architectures. But this modeling involves computationally expensive process of solving an ordinary differential equation (ODE) during maximum likelihood training. Recently proposed flow matching (FM) framework allows to substantially simplify the training phase using a regression objective with the interpolated forward vector field. In this paper, we propose an interpolant-free dual flow matching (DFM) approach without explicit assumptions about the modeled vector field. DFM optimizes the forward and, additionally, a reverse vector field model using a novel objective that facilitates bijectivity of the forward and reverse transformations. Our experiments with the SMAP unsupervised anomaly detection show advantages of DFM when compared to the CNF trained with either maximum likelihood or FM objectives with the state-of-the-art performance metrics.</description><subject>Anomalies</subject><subject>Differential equations</subject><subject>Fields (mathematics)</subject><subject>Matching</subject><subject>Performance measurement</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcHHztVLwzCtJLSrIz0nMK9FNK0pNVXApTcxRcMvJL1fwTSxJzsjMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXhjQ0Mzc1MjQwNjY-JUAQA4pC8g</recordid><startdate>20241011</startdate><enddate>20241011</enddate><creator>Gudovskiy, Denis</creator><creator>Okuno, Tomoyuki</creator><creator>Nakata, Yohei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241011</creationdate><title>DFM: Interpolant-free Dual Flow Matching</title><author>Gudovskiy, Denis ; Okuno, Tomoyuki ; Nakata, Yohei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31167521033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomalies</topic><topic>Differential equations</topic><topic>Fields (mathematics)</topic><topic>Matching</topic><topic>Performance measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Gudovskiy, Denis</creatorcontrib><creatorcontrib>Okuno, Tomoyuki</creatorcontrib><creatorcontrib>Nakata, Yohei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gudovskiy, Denis</au><au>Okuno, Tomoyuki</au><au>Nakata, Yohei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DFM: Interpolant-free Dual Flow Matching</atitle><jtitle>arXiv.org</jtitle><date>2024-10-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Continuous normalizing flows (CNFs) can model data distributions with expressive infinite-length architectures. But this modeling involves computationally expensive process of solving an ordinary differential equation (ODE) during maximum likelihood training. Recently proposed flow matching (FM) framework allows to substantially simplify the training phase using a regression objective with the interpolated forward vector field. In this paper, we propose an interpolant-free dual flow matching (DFM) approach without explicit assumptions about the modeled vector field. DFM optimizes the forward and, additionally, a reverse vector field model using a novel objective that facilitates bijectivity of the forward and reverse transformations. Our experiments with the SMAP unsupervised anomaly detection show advantages of DFM when compared to the CNF trained with either maximum likelihood or FM objectives with the state-of-the-art performance metrics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3116752103
source Free E- Journals
subjects Anomalies
Differential equations
Fields (mathematics)
Matching
Performance measurement
title DFM: Interpolant-free Dual Flow Matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A11%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DFM:%20Interpolant-free%20Dual%20Flow%20Matching&rft.jtitle=arXiv.org&rft.au=Gudovskiy,%20Denis&rft.date=2024-10-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3116752103%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116752103&rft_id=info:pmid/&rfr_iscdi=true