Diagnosing Robotics Systems Issues with Large Language Models

Quickly resolving issues reported in industrial applications is crucial to minimize economic impact. However, the required data analysis makes diagnosing the underlying root causes a challenging and time-consuming task, even for experts. In contrast, large language models (LLMs) excel at analyzing l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Herrmann, Jordis Emilia, Gopinath, Aswath Mandakath, Norrlof, Mikael, Mark Niklas Müller
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Herrmann, Jordis Emilia
Gopinath, Aswath Mandakath
Norrlof, Mikael
Mark Niklas Müller
description Quickly resolving issues reported in industrial applications is crucial to minimize economic impact. However, the required data analysis makes diagnosing the underlying root causes a challenging and time-consuming task, even for experts. In contrast, large language models (LLMs) excel at analyzing large amounts of data. Indeed, prior work in AI-Ops demonstrates their effectiveness in analyzing IT systems. Here, we extend this work to the challenging and largely unexplored domain of robotics systems. To this end, we create SYSDIAGBENCH, a proprietary system diagnostics benchmark for robotics, containing over 2500 reported issues. We leverage SYSDIAGBENCH to investigate the performance of LLMs for root cause analysis, considering a range of model sizes and adaptation techniques. Our results show that QLoRA finetuning can be sufficient to let a 7B-parameter model outperform GPT-4 in terms of diagnostic accuracy while being significantly more cost-effective. We validate our LLM-as-a-judge results with a human expert study and find that our best model achieves similar approval ratings as our reference labels.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3116751917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116751917</sourcerecordid><originalsourceid>FETCH-proquest_journals_31167519173</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdclMTM_LL87MS1cIyk_KL8lMLlYIriwuSc0tVvAsLi5NLVYozyzJUPBJLEpPBZJ56aWJQIZvfkpqTjEPA2taYk5xKi-U5mZQdnMNcfbQLSjKLwRqLYnPyi8tygNKxRsbGpqZmxpaGpobE6cKAHsxN98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116751917</pqid></control><display><type>article</type><title>Diagnosing Robotics Systems Issues with Large Language Models</title><source>Free E- Journals</source><creator>Herrmann, Jordis Emilia ; Gopinath, Aswath Mandakath ; Norrlof, Mikael ; Mark Niklas Müller</creator><creatorcontrib>Herrmann, Jordis Emilia ; Gopinath, Aswath Mandakath ; Norrlof, Mikael ; Mark Niklas Müller</creatorcontrib><description>Quickly resolving issues reported in industrial applications is crucial to minimize economic impact. However, the required data analysis makes diagnosing the underlying root causes a challenging and time-consuming task, even for experts. In contrast, large language models (LLMs) excel at analyzing large amounts of data. Indeed, prior work in AI-Ops demonstrates their effectiveness in analyzing IT systems. Here, we extend this work to the challenging and largely unexplored domain of robotics systems. To this end, we create SYSDIAGBENCH, a proprietary system diagnostics benchmark for robotics, containing over 2500 reported issues. We leverage SYSDIAGBENCH to investigate the performance of LLMs for root cause analysis, considering a range of model sizes and adaptation techniques. Our results show that QLoRA finetuning can be sufficient to let a 7B-parameter model outperform GPT-4 in terms of diagnostic accuracy while being significantly more cost-effective. We validate our LLM-as-a-judge results with a human expert study and find that our best model achieves similar approval ratings as our reference labels.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cost analysis ; Data analysis ; Economic impact ; Impact analysis ; Industrial applications ; Large language models ; Robotics ; Root cause analysis ; System effectiveness ; Systems analysis</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Herrmann, Jordis Emilia</creatorcontrib><creatorcontrib>Gopinath, Aswath Mandakath</creatorcontrib><creatorcontrib>Norrlof, Mikael</creatorcontrib><creatorcontrib>Mark Niklas Müller</creatorcontrib><title>Diagnosing Robotics Systems Issues with Large Language Models</title><title>arXiv.org</title><description>Quickly resolving issues reported in industrial applications is crucial to minimize economic impact. However, the required data analysis makes diagnosing the underlying root causes a challenging and time-consuming task, even for experts. In contrast, large language models (LLMs) excel at analyzing large amounts of data. Indeed, prior work in AI-Ops demonstrates their effectiveness in analyzing IT systems. Here, we extend this work to the challenging and largely unexplored domain of robotics systems. To this end, we create SYSDIAGBENCH, a proprietary system diagnostics benchmark for robotics, containing over 2500 reported issues. We leverage SYSDIAGBENCH to investigate the performance of LLMs for root cause analysis, considering a range of model sizes and adaptation techniques. Our results show that QLoRA finetuning can be sufficient to let a 7B-parameter model outperform GPT-4 in terms of diagnostic accuracy while being significantly more cost-effective. We validate our LLM-as-a-judge results with a human expert study and find that our best model achieves similar approval ratings as our reference labels.</description><subject>Cost analysis</subject><subject>Data analysis</subject><subject>Economic impact</subject><subject>Impact analysis</subject><subject>Industrial applications</subject><subject>Large language models</subject><subject>Robotics</subject><subject>Root cause analysis</subject><subject>System effectiveness</subject><subject>Systems analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdclMTM_LL87MS1cIyk_KL8lMLlYIriwuSc0tVvAsLi5NLVYozyzJUPBJLEpPBZJ56aWJQIZvfkpqTjEPA2taYk5xKi-U5mZQdnMNcfbQLSjKLwRqLYnPyi8tygNKxRsbGpqZmxpaGpobE6cKAHsxN98</recordid><startdate>20241006</startdate><enddate>20241006</enddate><creator>Herrmann, Jordis Emilia</creator><creator>Gopinath, Aswath Mandakath</creator><creator>Norrlof, Mikael</creator><creator>Mark Niklas Müller</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241006</creationdate><title>Diagnosing Robotics Systems Issues with Large Language Models</title><author>Herrmann, Jordis Emilia ; Gopinath, Aswath Mandakath ; Norrlof, Mikael ; Mark Niklas Müller</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31167519173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cost analysis</topic><topic>Data analysis</topic><topic>Economic impact</topic><topic>Impact analysis</topic><topic>Industrial applications</topic><topic>Large language models</topic><topic>Robotics</topic><topic>Root cause analysis</topic><topic>System effectiveness</topic><topic>Systems analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Herrmann, Jordis Emilia</creatorcontrib><creatorcontrib>Gopinath, Aswath Mandakath</creatorcontrib><creatorcontrib>Norrlof, Mikael</creatorcontrib><creatorcontrib>Mark Niklas Müller</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrmann, Jordis Emilia</au><au>Gopinath, Aswath Mandakath</au><au>Norrlof, Mikael</au><au>Mark Niklas Müller</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Diagnosing Robotics Systems Issues with Large Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-10-06</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Quickly resolving issues reported in industrial applications is crucial to minimize economic impact. However, the required data analysis makes diagnosing the underlying root causes a challenging and time-consuming task, even for experts. In contrast, large language models (LLMs) excel at analyzing large amounts of data. Indeed, prior work in AI-Ops demonstrates their effectiveness in analyzing IT systems. Here, we extend this work to the challenging and largely unexplored domain of robotics systems. To this end, we create SYSDIAGBENCH, a proprietary system diagnostics benchmark for robotics, containing over 2500 reported issues. We leverage SYSDIAGBENCH to investigate the performance of LLMs for root cause analysis, considering a range of model sizes and adaptation techniques. Our results show that QLoRA finetuning can be sufficient to let a 7B-parameter model outperform GPT-4 in terms of diagnostic accuracy while being significantly more cost-effective. We validate our LLM-as-a-judge results with a human expert study and find that our best model achieves similar approval ratings as our reference labels.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3116751917
source Free E- Journals
subjects Cost analysis
Data analysis
Economic impact
Impact analysis
Industrial applications
Large language models
Robotics
Root cause analysis
System effectiveness
Systems analysis
title Diagnosing Robotics Systems Issues with Large Language Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Diagnosing%20Robotics%20Systems%20Issues%20with%20Large%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Herrmann,%20Jordis%20Emilia&rft.date=2024-10-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3116751917%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116751917&rft_id=info:pmid/&rfr_iscdi=true