Approximation Properties of Mellin-Steklov Type Exponential Sampling Series
In this paper, we introduce Mellin-Steklov exponential samplingoperators of order \(r,r\in\mathbb{N}\), by considering appropriate Mellin-Steklov integrals. We investigate the approximation properties of these operators in continuousbounded spaces and \(L^p, 1 \leq p < \infty\) spaces on \(\mathb...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ozer, D Kursun, S Acar, T |
description | In this paper, we introduce Mellin-Steklov exponential samplingoperators of order \(r,r\in\mathbb{N}\), by considering appropriate Mellin-Steklov integrals. We investigate the approximation properties of these operators in continuousbounded spaces and \(L^p, 1 \leq p < \infty\) spaces on \(\mathbb{R}_+.\) By using the suitablemodulus of smoothness, it is given high order of approximation. Further, we present a quantitative Voronovskaja type theorem and we study the convergence results of newly constructed operators in logarithmic weighted spaces offunctions. Finally, the paper provides some examples of kernels that support the our results. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3116750993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116750993</sourcerecordid><originalsourceid>FETCH-proquest_journals_31167509933</originalsourceid><addsrcrecordid>eNqNjbEKwjAURYMgWLT_EHAupIlt7ShSEUQQ6l4yvEpqmheTVOrfm8EPcDrDPZezIAkXIs_2O85XJPV-YIzxsuJFIRJyOVjrcFajDAoNvTm04IICT7GnV9BamawN8NT4pvePBdrMFg2YoKSmrRxtFB60BRcvG7LspfaQ_rgm21NzP56zWHhN4EM34ORMnDqR52VVsLoW4j_rC2KXPbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116750993</pqid></control><display><type>article</type><title>Approximation Properties of Mellin-Steklov Type Exponential Sampling Series</title><source>Free E- Journals</source><creator>Ozer, D ; Kursun, S ; Acar, T</creator><creatorcontrib>Ozer, D ; Kursun, S ; Acar, T</creatorcontrib><description>In this paper, we introduce Mellin-Steklov exponential samplingoperators of order \(r,r\in\mathbb{N}\), by considering appropriate Mellin-Steklov integrals. We investigate the approximation properties of these operators in continuousbounded spaces and \(L^p, 1 \leq p < \infty\) spaces on \(\mathbb{R}_+.\) By using the suitablemodulus of smoothness, it is given high order of approximation. Further, we present a quantitative Voronovskaja type theorem and we study the convergence results of newly constructed operators in logarithmic weighted spaces offunctions. Finally, the paper provides some examples of kernels that support the our results.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Operators ; Smoothness</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ozer, D</creatorcontrib><creatorcontrib>Kursun, S</creatorcontrib><creatorcontrib>Acar, T</creatorcontrib><title>Approximation Properties of Mellin-Steklov Type Exponential Sampling Series</title><title>arXiv.org</title><description>In this paper, we introduce Mellin-Steklov exponential samplingoperators of order \(r,r\in\mathbb{N}\), by considering appropriate Mellin-Steklov integrals. We investigate the approximation properties of these operators in continuousbounded spaces and \(L^p, 1 \leq p < \infty\) spaces on \(\mathbb{R}_+.\) By using the suitablemodulus of smoothness, it is given high order of approximation. Further, we present a quantitative Voronovskaja type theorem and we study the convergence results of newly constructed operators in logarithmic weighted spaces offunctions. Finally, the paper provides some examples of kernels that support the our results.</description><subject>Approximation</subject><subject>Operators</subject><subject>Smoothness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjbEKwjAURYMgWLT_EHAupIlt7ShSEUQQ6l4yvEpqmheTVOrfm8EPcDrDPZezIAkXIs_2O85XJPV-YIzxsuJFIRJyOVjrcFajDAoNvTm04IICT7GnV9BamawN8NT4pvePBdrMFg2YoKSmrRxtFB60BRcvG7LspfaQ_rgm21NzP56zWHhN4EM34ORMnDqR52VVsLoW4j_rC2KXPbo</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Ozer, D</creator><creator>Kursun, S</creator><creator>Acar, T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241001</creationdate><title>Approximation Properties of Mellin-Steklov Type Exponential Sampling Series</title><author>Ozer, D ; Kursun, S ; Acar, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31167509933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Operators</topic><topic>Smoothness</topic><toplevel>online_resources</toplevel><creatorcontrib>Ozer, D</creatorcontrib><creatorcontrib>Kursun, S</creatorcontrib><creatorcontrib>Acar, T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozer, D</au><au>Kursun, S</au><au>Acar, T</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Approximation Properties of Mellin-Steklov Type Exponential Sampling Series</atitle><jtitle>arXiv.org</jtitle><date>2024-10-01</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we introduce Mellin-Steklov exponential samplingoperators of order \(r,r\in\mathbb{N}\), by considering appropriate Mellin-Steklov integrals. We investigate the approximation properties of these operators in continuousbounded spaces and \(L^p, 1 \leq p < \infty\) spaces on \(\mathbb{R}_+.\) By using the suitablemodulus of smoothness, it is given high order of approximation. Further, we present a quantitative Voronovskaja type theorem and we study the convergence results of newly constructed operators in logarithmic weighted spaces offunctions. Finally, the paper provides some examples of kernels that support the our results.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3116750993 |
source | Free E- Journals |
subjects | Approximation Operators Smoothness |
title | Approximation Properties of Mellin-Steklov Type Exponential Sampling Series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Approximation%20Properties%20of%20Mellin-Steklov%20Type%20Exponential%20Sampling%20Series&rft.jtitle=arXiv.org&rft.au=Ozer,%20D&rft.date=2024-10-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3116750993%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116750993&rft_id=info:pmid/&rfr_iscdi=true |