Dynamic Programming-Based ANFIS Energy Management System for Fuel Cell Hybrid Electric Vehicles

Reducing reliance on fossil fuels has driven the development of innovative technologies in recent years due to the increasing levels of greenhouse gases in the atmosphere. Since the automotive industry is one of the main contributors of high CO2 emissions, the introduction of more sustainable soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-10, Vol.16 (19), p.8710
Hauptverfasser: Gómez-Barroso, Álvaro, Alonso Tejeda, Asier, Vicente Makazaga, Iban, Zulueta Guerrero, Ekaitz, Lopez-Guede, Jose Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page 8710
container_title Sustainability
container_volume 16
creator Gómez-Barroso, Álvaro
Alonso Tejeda, Asier
Vicente Makazaga, Iban
Zulueta Guerrero, Ekaitz
Lopez-Guede, Jose Manuel
description Reducing reliance on fossil fuels has driven the development of innovative technologies in recent years due to the increasing levels of greenhouse gases in the atmosphere. Since the automotive industry is one of the main contributors of high CO2 emissions, the introduction of more sustainable solutions in this sector is fundamental. This paper presents a novel energy management system for fuel cell hybrid electric vehicles based on dynamic programming and adaptive neuro fuzzy inference system methodologies to optimize energy distribution between battery and fuel cell, therefore enhancing powertrain efficiency and reducing hydrogen consumption. Three different approaches have been considered for performance assessment through a simulation platform developed in MATLAB/Simulink 2023a. Further validation has been conducted via a rapid control prototyping device, showcasing significant improvements in hydrogen usage and operational efficiency across different drive cycles. Results manifest that the developed controllers successfully replicate the optimal control trajectory, providing a robust and computationally feasible solution for real-world applications. This research highlights the potential of combining advanced control strategies to meet performance and environmental demands of modern heavy-duty vehicles.
doi_str_mv 10.3390/su16198710
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3116706952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A813765698</galeid><sourcerecordid>A813765698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-2729458fc16a4ded8a82cb103b3ff742ac75843ed1402ae6bc3233dedf320acd3</originalsourceid><addsrcrecordid>eNpVkdtKw0AQhoMoWKo3PsGCVwqpe0h2k8taW1uoB6x6u2w2szElh7qbgHl7VypoZy5mGL7_H5gJgguCJ4yl-Mb1hJM0EQQfBSOKBQkJjvHxv_40OHdui30wRlLCR4G8GxpVlxo927awqq7LpghvlYMcTR8Xqw2aN2CLAT2oRhVQQ9OhzeA6qJFpLVr0UKEZVBVaDpktczSvQHfW273DR6krcGfBiVGVg_PfOg7eFvPX2TJcP92vZtN1qGksupAKmkZxYjThKsohT1RCdUYwy5gxIqJKiziJGOQkwlQBzzSjjHnQMIqVztk4uNz77mz72YPr5LbtbeNXSkYIF5inMfXUZE8VqgJZNqbtrNI-c_A3aBswpZ9PE8IEj3maeMHVgcAzHXx1heqdk6vNyyF7vWe1bZ2zYOTOlrWygyRY_jxI_j2IfQMeRYDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116706952</pqid></control><display><type>article</type><title>Dynamic Programming-Based ANFIS Energy Management System for Fuel Cell Hybrid Electric Vehicles</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gómez-Barroso, Álvaro ; Alonso Tejeda, Asier ; Vicente Makazaga, Iban ; Zulueta Guerrero, Ekaitz ; Lopez-Guede, Jose Manuel</creator><creatorcontrib>Gómez-Barroso, Álvaro ; Alonso Tejeda, Asier ; Vicente Makazaga, Iban ; Zulueta Guerrero, Ekaitz ; Lopez-Guede, Jose Manuel</creatorcontrib><description>Reducing reliance on fossil fuels has driven the development of innovative technologies in recent years due to the increasing levels of greenhouse gases in the atmosphere. Since the automotive industry is one of the main contributors of high CO2 emissions, the introduction of more sustainable solutions in this sector is fundamental. This paper presents a novel energy management system for fuel cell hybrid electric vehicles based on dynamic programming and adaptive neuro fuzzy inference system methodologies to optimize energy distribution between battery and fuel cell, therefore enhancing powertrain efficiency and reducing hydrogen consumption. Three different approaches have been considered for performance assessment through a simulation platform developed in MATLAB/Simulink 2023a. Further validation has been conducted via a rapid control prototyping device, showcasing significant improvements in hydrogen usage and operational efficiency across different drive cycles. Results manifest that the developed controllers successfully replicate the optimal control trajectory, providing a robust and computationally feasible solution for real-world applications. This research highlights the potential of combining advanced control strategies to meet performance and environmental demands of modern heavy-duty vehicles.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16198710</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Automobiles, Electric ; Dynamic programming ; Electric vehicles ; Emissions ; Energy consumption ; Energy efficiency ; Energy management ; Energy management systems ; Energy use ; Environmental impact ; Fossil fuels ; Fuel cell industry ; Fuel cells ; Fuzzy logic ; Hybrid vehicles ; Hydrogen ; Learning strategies ; Optimization ; Powertrain ; Simulation</subject><ispartof>Sustainability, 2024-10, Vol.16 (19), p.8710</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-2729458fc16a4ded8a82cb103b3ff742ac75843ed1402ae6bc3233dedf320acd3</cites><orcidid>0000-0001-6062-9343 ; 0000-0003-2934-1194 ; 0000-0002-6301-5643 ; 0009-0005-7367-326X ; 0000-0002-5310-1601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Gómez-Barroso, Álvaro</creatorcontrib><creatorcontrib>Alonso Tejeda, Asier</creatorcontrib><creatorcontrib>Vicente Makazaga, Iban</creatorcontrib><creatorcontrib>Zulueta Guerrero, Ekaitz</creatorcontrib><creatorcontrib>Lopez-Guede, Jose Manuel</creatorcontrib><title>Dynamic Programming-Based ANFIS Energy Management System for Fuel Cell Hybrid Electric Vehicles</title><title>Sustainability</title><description>Reducing reliance on fossil fuels has driven the development of innovative technologies in recent years due to the increasing levels of greenhouse gases in the atmosphere. Since the automotive industry is one of the main contributors of high CO2 emissions, the introduction of more sustainable solutions in this sector is fundamental. This paper presents a novel energy management system for fuel cell hybrid electric vehicles based on dynamic programming and adaptive neuro fuzzy inference system methodologies to optimize energy distribution between battery and fuel cell, therefore enhancing powertrain efficiency and reducing hydrogen consumption. Three different approaches have been considered for performance assessment through a simulation platform developed in MATLAB/Simulink 2023a. Further validation has been conducted via a rapid control prototyping device, showcasing significant improvements in hydrogen usage and operational efficiency across different drive cycles. Results manifest that the developed controllers successfully replicate the optimal control trajectory, providing a robust and computationally feasible solution for real-world applications. This research highlights the potential of combining advanced control strategies to meet performance and environmental demands of modern heavy-duty vehicles.</description><subject>Automobiles, Electric</subject><subject>Dynamic programming</subject><subject>Electric vehicles</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy management</subject><subject>Energy management systems</subject><subject>Energy use</subject><subject>Environmental impact</subject><subject>Fossil fuels</subject><subject>Fuel cell industry</subject><subject>Fuel cells</subject><subject>Fuzzy logic</subject><subject>Hybrid vehicles</subject><subject>Hydrogen</subject><subject>Learning strategies</subject><subject>Optimization</subject><subject>Powertrain</subject><subject>Simulation</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkdtKw0AQhoMoWKo3PsGCVwqpe0h2k8taW1uoB6x6u2w2szElh7qbgHl7VypoZy5mGL7_H5gJgguCJ4yl-Mb1hJM0EQQfBSOKBQkJjvHxv_40OHdui30wRlLCR4G8GxpVlxo927awqq7LpghvlYMcTR8Xqw2aN2CLAT2oRhVQQ9OhzeA6qJFpLVr0UKEZVBVaDpktczSvQHfW273DR6krcGfBiVGVg_PfOg7eFvPX2TJcP92vZtN1qGksupAKmkZxYjThKsohT1RCdUYwy5gxIqJKiziJGOQkwlQBzzSjjHnQMIqVztk4uNz77mz72YPr5LbtbeNXSkYIF5inMfXUZE8VqgJZNqbtrNI-c_A3aBswpZ9PE8IEj3maeMHVgcAzHXx1heqdk6vNyyF7vWe1bZ2zYOTOlrWygyRY_jxI_j2IfQMeRYDA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Gómez-Barroso, Álvaro</creator><creator>Alonso Tejeda, Asier</creator><creator>Vicente Makazaga, Iban</creator><creator>Zulueta Guerrero, Ekaitz</creator><creator>Lopez-Guede, Jose Manuel</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6062-9343</orcidid><orcidid>https://orcid.org/0000-0003-2934-1194</orcidid><orcidid>https://orcid.org/0000-0002-6301-5643</orcidid><orcidid>https://orcid.org/0009-0005-7367-326X</orcidid><orcidid>https://orcid.org/0000-0002-5310-1601</orcidid></search><sort><creationdate>20241001</creationdate><title>Dynamic Programming-Based ANFIS Energy Management System for Fuel Cell Hybrid Electric Vehicles</title><author>Gómez-Barroso, Álvaro ; Alonso Tejeda, Asier ; Vicente Makazaga, Iban ; Zulueta Guerrero, Ekaitz ; Lopez-Guede, Jose Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-2729458fc16a4ded8a82cb103b3ff742ac75843ed1402ae6bc3233dedf320acd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automobiles, Electric</topic><topic>Dynamic programming</topic><topic>Electric vehicles</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy management</topic><topic>Energy management systems</topic><topic>Energy use</topic><topic>Environmental impact</topic><topic>Fossil fuels</topic><topic>Fuel cell industry</topic><topic>Fuel cells</topic><topic>Fuzzy logic</topic><topic>Hybrid vehicles</topic><topic>Hydrogen</topic><topic>Learning strategies</topic><topic>Optimization</topic><topic>Powertrain</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Barroso, Álvaro</creatorcontrib><creatorcontrib>Alonso Tejeda, Asier</creatorcontrib><creatorcontrib>Vicente Makazaga, Iban</creatorcontrib><creatorcontrib>Zulueta Guerrero, Ekaitz</creatorcontrib><creatorcontrib>Lopez-Guede, Jose Manuel</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Barroso, Álvaro</au><au>Alonso Tejeda, Asier</au><au>Vicente Makazaga, Iban</au><au>Zulueta Guerrero, Ekaitz</au><au>Lopez-Guede, Jose Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Programming-Based ANFIS Energy Management System for Fuel Cell Hybrid Electric Vehicles</atitle><jtitle>Sustainability</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>16</volume><issue>19</issue><spage>8710</spage><pages>8710-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Reducing reliance on fossil fuels has driven the development of innovative technologies in recent years due to the increasing levels of greenhouse gases in the atmosphere. Since the automotive industry is one of the main contributors of high CO2 emissions, the introduction of more sustainable solutions in this sector is fundamental. This paper presents a novel energy management system for fuel cell hybrid electric vehicles based on dynamic programming and adaptive neuro fuzzy inference system methodologies to optimize energy distribution between battery and fuel cell, therefore enhancing powertrain efficiency and reducing hydrogen consumption. Three different approaches have been considered for performance assessment through a simulation platform developed in MATLAB/Simulink 2023a. Further validation has been conducted via a rapid control prototyping device, showcasing significant improvements in hydrogen usage and operational efficiency across different drive cycles. Results manifest that the developed controllers successfully replicate the optimal control trajectory, providing a robust and computationally feasible solution for real-world applications. This research highlights the potential of combining advanced control strategies to meet performance and environmental demands of modern heavy-duty vehicles.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16198710</doi><orcidid>https://orcid.org/0000-0001-6062-9343</orcidid><orcidid>https://orcid.org/0000-0003-2934-1194</orcidid><orcidid>https://orcid.org/0000-0002-6301-5643</orcidid><orcidid>https://orcid.org/0009-0005-7367-326X</orcidid><orcidid>https://orcid.org/0000-0002-5310-1601</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2024-10, Vol.16 (19), p.8710
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_3116706952
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Automobiles, Electric
Dynamic programming
Electric vehicles
Emissions
Energy consumption
Energy efficiency
Energy management
Energy management systems
Energy use
Environmental impact
Fossil fuels
Fuel cell industry
Fuel cells
Fuzzy logic
Hybrid vehicles
Hydrogen
Learning strategies
Optimization
Powertrain
Simulation
title Dynamic Programming-Based ANFIS Energy Management System for Fuel Cell Hybrid Electric Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T11%3A49%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Programming-Based%20ANFIS%20Energy%20Management%20System%20for%20Fuel%20Cell%20Hybrid%20Electric%20Vehicles&rft.jtitle=Sustainability&rft.au=G%C3%B3mez-Barroso,%20%C3%81lvaro&rft.date=2024-10-01&rft.volume=16&rft.issue=19&rft.spage=8710&rft.pages=8710-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16198710&rft_dat=%3Cgale_proqu%3EA813765698%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116706952&rft_id=info:pmid/&rft_galeid=A813765698&rfr_iscdi=true