Dynamic Programming-Based ANFIS Energy Management System for Fuel Cell Hybrid Electric Vehicles
Reducing reliance on fossil fuels has driven the development of innovative technologies in recent years due to the increasing levels of greenhouse gases in the atmosphere. Since the automotive industry is one of the main contributors of high CO2 emissions, the introduction of more sustainable soluti...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-10, Vol.16 (19), p.8710 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 8710 |
container_title | Sustainability |
container_volume | 16 |
creator | Gómez-Barroso, Álvaro Alonso Tejeda, Asier Vicente Makazaga, Iban Zulueta Guerrero, Ekaitz Lopez-Guede, Jose Manuel |
description | Reducing reliance on fossil fuels has driven the development of innovative technologies in recent years due to the increasing levels of greenhouse gases in the atmosphere. Since the automotive industry is one of the main contributors of high CO2 emissions, the introduction of more sustainable solutions in this sector is fundamental. This paper presents a novel energy management system for fuel cell hybrid electric vehicles based on dynamic programming and adaptive neuro fuzzy inference system methodologies to optimize energy distribution between battery and fuel cell, therefore enhancing powertrain efficiency and reducing hydrogen consumption. Three different approaches have been considered for performance assessment through a simulation platform developed in MATLAB/Simulink 2023a. Further validation has been conducted via a rapid control prototyping device, showcasing significant improvements in hydrogen usage and operational efficiency across different drive cycles. Results manifest that the developed controllers successfully replicate the optimal control trajectory, providing a robust and computationally feasible solution for real-world applications. This research highlights the potential of combining advanced control strategies to meet performance and environmental demands of modern heavy-duty vehicles. |
doi_str_mv | 10.3390/su16198710 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3116706952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A813765698</galeid><sourcerecordid>A813765698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-2729458fc16a4ded8a82cb103b3ff742ac75843ed1402ae6bc3233dedf320acd3</originalsourceid><addsrcrecordid>eNpVkdtKw0AQhoMoWKo3PsGCVwqpe0h2k8taW1uoB6x6u2w2szElh7qbgHl7VypoZy5mGL7_H5gJgguCJ4yl-Mb1hJM0EQQfBSOKBQkJjvHxv_40OHdui30wRlLCR4G8GxpVlxo927awqq7LpghvlYMcTR8Xqw2aN2CLAT2oRhVQQ9OhzeA6qJFpLVr0UKEZVBVaDpktczSvQHfW273DR6krcGfBiVGVg_PfOg7eFvPX2TJcP92vZtN1qGksupAKmkZxYjThKsohT1RCdUYwy5gxIqJKiziJGOQkwlQBzzSjjHnQMIqVztk4uNz77mz72YPr5LbtbeNXSkYIF5inMfXUZE8VqgJZNqbtrNI-c_A3aBswpZ9PE8IEj3maeMHVgcAzHXx1heqdk6vNyyF7vWe1bZ2zYOTOlrWygyRY_jxI_j2IfQMeRYDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116706952</pqid></control><display><type>article</type><title>Dynamic Programming-Based ANFIS Energy Management System for Fuel Cell Hybrid Electric Vehicles</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gómez-Barroso, Álvaro ; Alonso Tejeda, Asier ; Vicente Makazaga, Iban ; Zulueta Guerrero, Ekaitz ; Lopez-Guede, Jose Manuel</creator><creatorcontrib>Gómez-Barroso, Álvaro ; Alonso Tejeda, Asier ; Vicente Makazaga, Iban ; Zulueta Guerrero, Ekaitz ; Lopez-Guede, Jose Manuel</creatorcontrib><description>Reducing reliance on fossil fuels has driven the development of innovative technologies in recent years due to the increasing levels of greenhouse gases in the atmosphere. Since the automotive industry is one of the main contributors of high CO2 emissions, the introduction of more sustainable solutions in this sector is fundamental. This paper presents a novel energy management system for fuel cell hybrid electric vehicles based on dynamic programming and adaptive neuro fuzzy inference system methodologies to optimize energy distribution between battery and fuel cell, therefore enhancing powertrain efficiency and reducing hydrogen consumption. Three different approaches have been considered for performance assessment through a simulation platform developed in MATLAB/Simulink 2023a. Further validation has been conducted via a rapid control prototyping device, showcasing significant improvements in hydrogen usage and operational efficiency across different drive cycles. Results manifest that the developed controllers successfully replicate the optimal control trajectory, providing a robust and computationally feasible solution for real-world applications. This research highlights the potential of combining advanced control strategies to meet performance and environmental demands of modern heavy-duty vehicles.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16198710</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Automobiles, Electric ; Dynamic programming ; Electric vehicles ; Emissions ; Energy consumption ; Energy efficiency ; Energy management ; Energy management systems ; Energy use ; Environmental impact ; Fossil fuels ; Fuel cell industry ; Fuel cells ; Fuzzy logic ; Hybrid vehicles ; Hydrogen ; Learning strategies ; Optimization ; Powertrain ; Simulation</subject><ispartof>Sustainability, 2024-10, Vol.16 (19), p.8710</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-2729458fc16a4ded8a82cb103b3ff742ac75843ed1402ae6bc3233dedf320acd3</cites><orcidid>0000-0001-6062-9343 ; 0000-0003-2934-1194 ; 0000-0002-6301-5643 ; 0009-0005-7367-326X ; 0000-0002-5310-1601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Gómez-Barroso, Álvaro</creatorcontrib><creatorcontrib>Alonso Tejeda, Asier</creatorcontrib><creatorcontrib>Vicente Makazaga, Iban</creatorcontrib><creatorcontrib>Zulueta Guerrero, Ekaitz</creatorcontrib><creatorcontrib>Lopez-Guede, Jose Manuel</creatorcontrib><title>Dynamic Programming-Based ANFIS Energy Management System for Fuel Cell Hybrid Electric Vehicles</title><title>Sustainability</title><description>Reducing reliance on fossil fuels has driven the development of innovative technologies in recent years due to the increasing levels of greenhouse gases in the atmosphere. Since the automotive industry is one of the main contributors of high CO2 emissions, the introduction of more sustainable solutions in this sector is fundamental. This paper presents a novel energy management system for fuel cell hybrid electric vehicles based on dynamic programming and adaptive neuro fuzzy inference system methodologies to optimize energy distribution between battery and fuel cell, therefore enhancing powertrain efficiency and reducing hydrogen consumption. Three different approaches have been considered for performance assessment through a simulation platform developed in MATLAB/Simulink 2023a. Further validation has been conducted via a rapid control prototyping device, showcasing significant improvements in hydrogen usage and operational efficiency across different drive cycles. Results manifest that the developed controllers successfully replicate the optimal control trajectory, providing a robust and computationally feasible solution for real-world applications. This research highlights the potential of combining advanced control strategies to meet performance and environmental demands of modern heavy-duty vehicles.</description><subject>Automobiles, Electric</subject><subject>Dynamic programming</subject><subject>Electric vehicles</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy management</subject><subject>Energy management systems</subject><subject>Energy use</subject><subject>Environmental impact</subject><subject>Fossil fuels</subject><subject>Fuel cell industry</subject><subject>Fuel cells</subject><subject>Fuzzy logic</subject><subject>Hybrid vehicles</subject><subject>Hydrogen</subject><subject>Learning strategies</subject><subject>Optimization</subject><subject>Powertrain</subject><subject>Simulation</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkdtKw0AQhoMoWKo3PsGCVwqpe0h2k8taW1uoB6x6u2w2szElh7qbgHl7VypoZy5mGL7_H5gJgguCJ4yl-Mb1hJM0EQQfBSOKBQkJjvHxv_40OHdui30wRlLCR4G8GxpVlxo927awqq7LpghvlYMcTR8Xqw2aN2CLAT2oRhVQQ9OhzeA6qJFpLVr0UKEZVBVaDpktczSvQHfW273DR6krcGfBiVGVg_PfOg7eFvPX2TJcP92vZtN1qGksupAKmkZxYjThKsohT1RCdUYwy5gxIqJKiziJGOQkwlQBzzSjjHnQMIqVztk4uNz77mz72YPr5LbtbeNXSkYIF5inMfXUZE8VqgJZNqbtrNI-c_A3aBswpZ9PE8IEj3maeMHVgcAzHXx1heqdk6vNyyF7vWe1bZ2zYOTOlrWygyRY_jxI_j2IfQMeRYDA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Gómez-Barroso, Álvaro</creator><creator>Alonso Tejeda, Asier</creator><creator>Vicente Makazaga, Iban</creator><creator>Zulueta Guerrero, Ekaitz</creator><creator>Lopez-Guede, Jose Manuel</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6062-9343</orcidid><orcidid>https://orcid.org/0000-0003-2934-1194</orcidid><orcidid>https://orcid.org/0000-0002-6301-5643</orcidid><orcidid>https://orcid.org/0009-0005-7367-326X</orcidid><orcidid>https://orcid.org/0000-0002-5310-1601</orcidid></search><sort><creationdate>20241001</creationdate><title>Dynamic Programming-Based ANFIS Energy Management System for Fuel Cell Hybrid Electric Vehicles</title><author>Gómez-Barroso, Álvaro ; Alonso Tejeda, Asier ; Vicente Makazaga, Iban ; Zulueta Guerrero, Ekaitz ; Lopez-Guede, Jose Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-2729458fc16a4ded8a82cb103b3ff742ac75843ed1402ae6bc3233dedf320acd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automobiles, Electric</topic><topic>Dynamic programming</topic><topic>Electric vehicles</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy management</topic><topic>Energy management systems</topic><topic>Energy use</topic><topic>Environmental impact</topic><topic>Fossil fuels</topic><topic>Fuel cell industry</topic><topic>Fuel cells</topic><topic>Fuzzy logic</topic><topic>Hybrid vehicles</topic><topic>Hydrogen</topic><topic>Learning strategies</topic><topic>Optimization</topic><topic>Powertrain</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Barroso, Álvaro</creatorcontrib><creatorcontrib>Alonso Tejeda, Asier</creatorcontrib><creatorcontrib>Vicente Makazaga, Iban</creatorcontrib><creatorcontrib>Zulueta Guerrero, Ekaitz</creatorcontrib><creatorcontrib>Lopez-Guede, Jose Manuel</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Barroso, Álvaro</au><au>Alonso Tejeda, Asier</au><au>Vicente Makazaga, Iban</au><au>Zulueta Guerrero, Ekaitz</au><au>Lopez-Guede, Jose Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Programming-Based ANFIS Energy Management System for Fuel Cell Hybrid Electric Vehicles</atitle><jtitle>Sustainability</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>16</volume><issue>19</issue><spage>8710</spage><pages>8710-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Reducing reliance on fossil fuels has driven the development of innovative technologies in recent years due to the increasing levels of greenhouse gases in the atmosphere. Since the automotive industry is one of the main contributors of high CO2 emissions, the introduction of more sustainable solutions in this sector is fundamental. This paper presents a novel energy management system for fuel cell hybrid electric vehicles based on dynamic programming and adaptive neuro fuzzy inference system methodologies to optimize energy distribution between battery and fuel cell, therefore enhancing powertrain efficiency and reducing hydrogen consumption. Three different approaches have been considered for performance assessment through a simulation platform developed in MATLAB/Simulink 2023a. Further validation has been conducted via a rapid control prototyping device, showcasing significant improvements in hydrogen usage and operational efficiency across different drive cycles. Results manifest that the developed controllers successfully replicate the optimal control trajectory, providing a robust and computationally feasible solution for real-world applications. This research highlights the potential of combining advanced control strategies to meet performance and environmental demands of modern heavy-duty vehicles.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16198710</doi><orcidid>https://orcid.org/0000-0001-6062-9343</orcidid><orcidid>https://orcid.org/0000-0003-2934-1194</orcidid><orcidid>https://orcid.org/0000-0002-6301-5643</orcidid><orcidid>https://orcid.org/0009-0005-7367-326X</orcidid><orcidid>https://orcid.org/0000-0002-5310-1601</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2024-10, Vol.16 (19), p.8710 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_3116706952 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Automobiles, Electric Dynamic programming Electric vehicles Emissions Energy consumption Energy efficiency Energy management Energy management systems Energy use Environmental impact Fossil fuels Fuel cell industry Fuel cells Fuzzy logic Hybrid vehicles Hydrogen Learning strategies Optimization Powertrain Simulation |
title | Dynamic Programming-Based ANFIS Energy Management System for Fuel Cell Hybrid Electric Vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T11%3A49%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Programming-Based%20ANFIS%20Energy%20Management%20System%20for%20Fuel%20Cell%20Hybrid%20Electric%20Vehicles&rft.jtitle=Sustainability&rft.au=G%C3%B3mez-Barroso,%20%C3%81lvaro&rft.date=2024-10-01&rft.volume=16&rft.issue=19&rft.spage=8710&rft.pages=8710-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16198710&rft_dat=%3Cgale_proqu%3EA813765698%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116706952&rft_id=info:pmid/&rft_galeid=A813765698&rfr_iscdi=true |