Nonstationary Bending Waves in an Anisotropic Timoshenko Plate on an Elastic-Inertial Foundation

We consider the problem of nonstationary strains of an infinite anisotropic Timoshenko plate on an elastic-inertial foundation. A monoclinic symmetry type of an elastic medium, which is characterized by one plane of symmetry, is adopted as a model of anisotropy. Analytical methods are used to constr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiophysics and quantum electronics 2023, Vol.66 (10), p.729-742
Hauptverfasser: Serdyuk, D. O., Fedotenkov, G. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 742
container_issue 10
container_start_page 729
container_title Radiophysics and quantum electronics
container_volume 66
creator Serdyuk, D. O.
Fedotenkov, G. V.
description We consider the problem of nonstationary strains of an infinite anisotropic Timoshenko plate on an elastic-inertial foundation. A monoclinic symmetry type of an elastic medium, which is characterized by one plane of symmetry, is adopted as a model of anisotropy. Analytical methods are used to construct new fundamental solutions for the nonstationary normal displacement and deflection angles. The Laplace and Fourier integral transforms are used to find fundamental solutions, which serve as the basis for obtaining the integral relations for studies of nonstationary bending waves in a plate under the influence of sets of lumped and distributed loads. An example of the calculations is presented.
doi_str_mv 10.1007/s11141-024-10331-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3116658634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116658634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-2a92a3167eccec30dd0dc041c6231fe5a0cccb4760af957c1e415f122bb52b093</originalsourceid><addsrcrecordid>eNp9kMFOAjEQhhujiYi-gKcmnqszbXeXPSIBJSHqAeOxlm4Xi9Biu0h8e1fWxJunSSbf90_mJ-QS4RoBipuEiBIZcMkQhEC2PyI9zArBSuRwTHrQbtlASnFKzlJaAbSaHPTI60PwqdGNC17HL3prfeX8kr7oT5uo81R7OvQuhSaGrTN07jYhvVn_HujTWjeWhgMyXuvUOMOm3sbG6TWdhJ2vDqnn5KTW62QvfmefPE_G89E9mz3eTUfDGTMcoGFcl1wLzAtrjDUCqgoqAxJNzgXWNtNgjFnIIgddl1lh0ErMauR8scj4AkrRJ1dd7jaGj51NjVqFXfTtSSUQ8zwb5EK2FO8oE0NK0dZqG92m_VwhqJ8mVdekaptUhybVvpVEJ6UW9ksb_6L_sb4BHRN3oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116658634</pqid></control><display><type>article</type><title>Nonstationary Bending Waves in an Anisotropic Timoshenko Plate on an Elastic-Inertial Foundation</title><source>SpringerNature Journals</source><creator>Serdyuk, D. O. ; Fedotenkov, G. V.</creator><creatorcontrib>Serdyuk, D. O. ; Fedotenkov, G. V.</creatorcontrib><description>We consider the problem of nonstationary strains of an infinite anisotropic Timoshenko plate on an elastic-inertial foundation. A monoclinic symmetry type of an elastic medium, which is characterized by one plane of symmetry, is adopted as a model of anisotropy. Analytical methods are used to construct new fundamental solutions for the nonstationary normal displacement and deflection angles. The Laplace and Fourier integral transforms are used to find fundamental solutions, which serve as the basis for obtaining the integral relations for studies of nonstationary bending waves in a plate under the influence of sets of lumped and distributed loads. An example of the calculations is presented.</description><identifier>ISSN: 0033-8443</identifier><identifier>EISSN: 1573-9120</identifier><identifier>DOI: 10.1007/s11141-024-10331-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Astronomy ; Astrophysics and Astroparticles ; Bending ; Elastic anisotropy ; Elastic foundations ; Elastic media ; Hadrons ; Heavy Ions ; Integral transforms ; Lasers ; Mathematical and Computational Physics ; Nuclear Physics ; Observations and Techniques ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Quantum Optics ; Symmetry ; Theoretical</subject><ispartof>Radiophysics and quantum electronics, 2023, Vol.66 (10), p.729-742</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-2a92a3167eccec30dd0dc041c6231fe5a0cccb4760af957c1e415f122bb52b093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11141-024-10331-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11141-024-10331-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Serdyuk, D. O.</creatorcontrib><creatorcontrib>Fedotenkov, G. V.</creatorcontrib><title>Nonstationary Bending Waves in an Anisotropic Timoshenko Plate on an Elastic-Inertial Foundation</title><title>Radiophysics and quantum electronics</title><addtitle>Radiophys Quantum El</addtitle><description>We consider the problem of nonstationary strains of an infinite anisotropic Timoshenko plate on an elastic-inertial foundation. A monoclinic symmetry type of an elastic medium, which is characterized by one plane of symmetry, is adopted as a model of anisotropy. Analytical methods are used to construct new fundamental solutions for the nonstationary normal displacement and deflection angles. The Laplace and Fourier integral transforms are used to find fundamental solutions, which serve as the basis for obtaining the integral relations for studies of nonstationary bending waves in a plate under the influence of sets of lumped and distributed loads. An example of the calculations is presented.</description><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Bending</subject><subject>Elastic anisotropy</subject><subject>Elastic foundations</subject><subject>Elastic media</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Integral transforms</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Nuclear Physics</subject><subject>Observations and Techniques</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Optics</subject><subject>Symmetry</subject><subject>Theoretical</subject><issn>0033-8443</issn><issn>1573-9120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAjEQhhujiYi-gKcmnqszbXeXPSIBJSHqAeOxlm4Xi9Biu0h8e1fWxJunSSbf90_mJ-QS4RoBipuEiBIZcMkQhEC2PyI9zArBSuRwTHrQbtlASnFKzlJaAbSaHPTI60PwqdGNC17HL3prfeX8kr7oT5uo81R7OvQuhSaGrTN07jYhvVn_HujTWjeWhgMyXuvUOMOm3sbG6TWdhJ2vDqnn5KTW62QvfmefPE_G89E9mz3eTUfDGTMcoGFcl1wLzAtrjDUCqgoqAxJNzgXWNtNgjFnIIgddl1lh0ErMauR8scj4AkrRJ1dd7jaGj51NjVqFXfTtSSUQ8zwb5EK2FO8oE0NK0dZqG92m_VwhqJ8mVdekaptUhybVvpVEJ6UW9ksb_6L_sb4BHRN3oQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Serdyuk, D. O.</creator><creator>Fedotenkov, G. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2023</creationdate><title>Nonstationary Bending Waves in an Anisotropic Timoshenko Plate on an Elastic-Inertial Foundation</title><author>Serdyuk, D. O. ; Fedotenkov, G. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-2a92a3167eccec30dd0dc041c6231fe5a0cccb4760af957c1e415f122bb52b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Bending</topic><topic>Elastic anisotropy</topic><topic>Elastic foundations</topic><topic>Elastic media</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Integral transforms</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Nuclear Physics</topic><topic>Observations and Techniques</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Optics</topic><topic>Symmetry</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serdyuk, D. O.</creatorcontrib><creatorcontrib>Fedotenkov, G. V.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Radiophysics and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serdyuk, D. O.</au><au>Fedotenkov, G. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonstationary Bending Waves in an Anisotropic Timoshenko Plate on an Elastic-Inertial Foundation</atitle><jtitle>Radiophysics and quantum electronics</jtitle><stitle>Radiophys Quantum El</stitle><date>2023</date><risdate>2023</risdate><volume>66</volume><issue>10</issue><spage>729</spage><epage>742</epage><pages>729-742</pages><issn>0033-8443</issn><eissn>1573-9120</eissn><abstract>We consider the problem of nonstationary strains of an infinite anisotropic Timoshenko plate on an elastic-inertial foundation. A monoclinic symmetry type of an elastic medium, which is characterized by one plane of symmetry, is adopted as a model of anisotropy. Analytical methods are used to construct new fundamental solutions for the nonstationary normal displacement and deflection angles. The Laplace and Fourier integral transforms are used to find fundamental solutions, which serve as the basis for obtaining the integral relations for studies of nonstationary bending waves in a plate under the influence of sets of lumped and distributed loads. An example of the calculations is presented.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11141-024-10331-w</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-8443
ispartof Radiophysics and quantum electronics, 2023, Vol.66 (10), p.729-742
issn 0033-8443
1573-9120
language eng
recordid cdi_proquest_journals_3116658634
source SpringerNature Journals
subjects Astronomy
Astrophysics and Astroparticles
Bending
Elastic anisotropy
Elastic foundations
Elastic media
Hadrons
Heavy Ions
Integral transforms
Lasers
Mathematical and Computational Physics
Nuclear Physics
Observations and Techniques
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Quantum Optics
Symmetry
Theoretical
title Nonstationary Bending Waves in an Anisotropic Timoshenko Plate on an Elastic-Inertial Foundation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonstationary%20Bending%20Waves%20in%20an%20Anisotropic%20Timoshenko%20Plate%20on%20an%20Elastic-Inertial%20Foundation&rft.jtitle=Radiophysics%20and%20quantum%20electronics&rft.au=Serdyuk,%20D.%20O.&rft.date=2023&rft.volume=66&rft.issue=10&rft.spage=729&rft.epage=742&rft.pages=729-742&rft.issn=0033-8443&rft.eissn=1573-9120&rft_id=info:doi/10.1007/s11141-024-10331-w&rft_dat=%3Cproquest_cross%3E3116658634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116658634&rft_id=info:pmid/&rfr_iscdi=true